Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (3)

Search Parameters:
Keywords = ginger soft rot

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 4190 KiB  
Article
Identification, Detection, and Management of Soft Rot Disease of Ginger in the Eastern Himalayan Region of India
by Utpal Dey, Shatabhisa Sarkar, Durga Prasad Awasthi, Mukesh Sehgal, Ravinder Kumar, Biman De, Nayan K. Adhikary, Abhijit Debnath, Rahul Kumar Tiwari, Milan Kumar Lal, Subhash Chander, Ph. Ranjit Sharma and Amulya Kumar Mohanty
Pathogens 2025, 14(6), 544; https://doi.org/10.3390/pathogens14060544 - 29 May 2025
Viewed by 875
Abstract
Ginger is an important spice crop in the north-eastern region of India. Rhizome rot, also called soft rot, is one of the most devastating diseases found in ginger that causes yield losses of up to 100% under favourable conditions. Initially, the disease symptoms [...] Read more.
Ginger is an important spice crop in the north-eastern region of India. Rhizome rot, also called soft rot, is one of the most devastating diseases found in ginger that causes yield losses of up to 100% under favourable conditions. Initially, the disease symptoms appear as a light yellowing of the leaf tips that gradually spreads down to the leaf blade of lower leaves and the leaf sheath along the margin. Under favourable environmental conditions, the disease spreads rapidly, potentially causing significant crop damage. The pathogen can infect at any stage of crop growth, and under favourable environmental conditions, the disease spreads rapidly, failing the crop. Current research emphasises mitigating the losses caused by the devastating disease by using management strategies and biocontrol agents (BCAs). Results revealed that the average highest percent rhizome germination, lowest mean disease incidence, lowest mean disease severity index, lowest coefficient of disease index value, highest rhizome yield and benefit–cost ratio were recorded with Trichoderma harzianum (10 g/kg of rhizomes) + soil application of T. harzianum-enriched well-decomposed farm yard manure (3 kg of T. harzianum mixed with 100 kg FYM at 10–15 days before sowing) + soil drenching with T. harzianum at the rate 10 kg/ha, compared to the untreated control. Furthermore, soil chemical properties such as pH, electrical conductivity, soil organic carbon, total available nitrogen, total available phosphorus, and total available potassium play critical roles in rhizome rot disease severity. BCAs can suppress the phytopathogenic fungi and modulate different functions in plants. Full article
(This article belongs to the Special Issue Identification and Characterization of Plant Pathogens)
Show Figures

Figure 1

15 pages, 6462 KiB  
Article
Benzalkonium Chloride and Benzethonium Chloride Effectively Reduce Spore Germination of Ginger Soft Rot Pathogens: Fusarium solani and Fusarium oxysporum
by Dongxu Zhao, Yang Zhang, Zhaoyang Jin, Ruxiao Bai, Jun Wang, Li Wu and Yujian He
J. Fungi 2024, 10(1), 8; https://doi.org/10.3390/jof10010008 - 22 Dec 2023
Cited by 2 | Viewed by 3024
Abstract
Ginger soft rot is a serious soil-borne disease caused by Fusarium solani and Fusarium oxysporum, resulting in reduced crop yields. The application of common chemical fungicides is considered to be an effective method of sterilization, and therefore, they pose a serious threat [...] Read more.
Ginger soft rot is a serious soil-borne disease caused by Fusarium solani and Fusarium oxysporum, resulting in reduced crop yields. The application of common chemical fungicides is considered to be an effective method of sterilization, and therefore, they pose a serious threat to the environment and human health due to their high toxicity. Benzalkonium chloride (BAC) and benzethonium chloride (BEC) are two popular quaternary ammonium salts with a wide range of fungicidal effects. In this study, we investigated the fungicidal effects of BAC and BEC on soft rot disease of ginger as alternatives to common chemical fungicides. Two soft rot pathogens of ginger were successfully isolated from diseased ginger by using the spread plate method and sequenced as F. solani and F. oxysporum using the high-throughput fungal sequencing method. We investigated the fungicidal effects of BAC and BEC on F. solani and F. oxysporum, and we explored the antifungal mechanisms. Almost complete inactivation of spores of F. solani and F. oxysporum was observed at 100 mg/L fungicide concentration. Only a small amount of spore regrowth was observed after the inactivation treatment of spores of F. solani and F. oxysporum in soil, which proved that BAC and BEC have the potential to be used as an alternative to common chemical fungicides for soil disinfection of diseased ginger. Full article
(This article belongs to the Special Issue Fungal Pathogens and Host Plants)
Show Figures

Figure 1

23 pages, 13136 KiB  
Article
A Mobile-Based System for Detecting Ginger Leaf Disorders Using Deep Learning
by Hamna Waheed, Waseem Akram, Saif ul Islam, Abdul Hadi, Jalil Boudjadar and Noureen Zafar
Future Internet 2023, 15(3), 86; https://doi.org/10.3390/fi15030086 - 21 Feb 2023
Cited by 7 | Viewed by 5258
Abstract
The agriculture sector plays a crucial role in supplying nutritious and high-quality food. Plant disorders significantly impact crop productivity, resulting in an annual loss of 33%. The early and accurate detection of plant disorders is a difficult task for farmers and requires specialized [...] Read more.
The agriculture sector plays a crucial role in supplying nutritious and high-quality food. Plant disorders significantly impact crop productivity, resulting in an annual loss of 33%. The early and accurate detection of plant disorders is a difficult task for farmers and requires specialized knowledge, significant effort, and labor. In this context, smart devices and advanced artificial intelligence techniques have significant potential to pave the way toward sustainable and smart agriculture. This paper presents a deep learning-based android system that can diagnose ginger plant disorders such as soft rot disease, pest patterns, and nutritional deficiencies. To achieve this, state-of-the-art deep learning models were trained on a real dataset of 4,394 ginger leaf images with diverse backgrounds. The trained models were then integrated into an Android-based mobile application that takes ginger leaf images as input and performs the real-time detection of crop disorders. The proposed system shows promising results in terms of accuracy, precision, recall, confusion matrices, computational cost, Matthews correlation coefficient (MCC), mAP, and F1-score. Full article
Show Figures

Figure 1

Back to TopTop