Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (11)

Search Parameters:
Keywords = geo-social queries

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 3492 KiB  
Article
A Question and Answering Service of Typhoon Disasters Based on the T5 Large Language Model
by Yongqi Xia, Yi Huang, Qianqian Qiu, Xueying Zhang, Lizhi Miao and Yixiang Chen
ISPRS Int. J. Geo-Inf. 2024, 13(5), 165; https://doi.org/10.3390/ijgi13050165 - 14 May 2024
Cited by 10 | Viewed by 3184
Abstract
A typhoon disaster is a common meteorological disaster that seriously impacts natural ecology, social economy, and even human sustainable development. It is crucial to access the typhoon disaster information, and the corresponding disaster prevention and reduction strategies. However, traditional question and answering (Q&A) [...] Read more.
A typhoon disaster is a common meteorological disaster that seriously impacts natural ecology, social economy, and even human sustainable development. It is crucial to access the typhoon disaster information, and the corresponding disaster prevention and reduction strategies. However, traditional question and answering (Q&A) methods exhibit shortcomings like low information retrieval efficiency and poor interactivity. This makes it difficult to satisfy users’ demands for obtaining accurate information. Consequently, this work proposes a typhoon disaster knowledge Q&A approach based on LLM (T5). This method integrates two technical paradigms of domain fine-tuning and retrieval-augmented generation (RAG) to optimize user interaction experience and improve the precision of disaster information retrieval. The process specifically includes the following steps. First, this study selects information about typhoon disasters from open-source databases, such as Baidu Encyclopedia and Wikipedia. Utilizing techniques such as slicing and masked language modeling, we generate a training set and 2204 Q&A pairs specifically focused on typhoon disaster knowledge. Second, we continuously pretrain the T5 model using the training set. This process involves encoding typhoon knowledge as parameters in the neural network’s weights and fine-tuning the pretrained model with Q&A pairs to adapt the T5 model for downstream Q&A tasks. Third, when responding to user queries, we retrieve passages from external knowledge bases semantically similar to the queries to enhance the prompts. This action further improves the response quality of the fine-tuned model. Finally, we evaluate the constructed typhoon agent (Typhoon-T5) using different similarity-matching approaches. Furthermore, the method proposed in this work lays the foundation for the cross-integration of large language models with disaster information. It is expected to promote the further development of GeoAI. Full article
Show Figures

Figure 1

20 pages, 3724 KiB  
Article
Get Spatial from Non-Spatial Information: Inferring Spatial Information from Textual Descriptions by Conceptual Spaces
by Omid Reza Abbasi, Ali Asghar Alesheikh and Seyed Vahid Razavi-Termeh
Mathematics 2023, 11(24), 4917; https://doi.org/10.3390/math11244917 - 11 Dec 2023
Cited by 2 | Viewed by 1508
Abstract
With the rapid growth of social media, textual content is increasingly growing. Unstructured texts are a rich source of latent spatial information. Extracting such information is useful in query processing, geographical information retrieval (GIR), and recommender systems. In this paper, we propose a [...] Read more.
With the rapid growth of social media, textual content is increasingly growing. Unstructured texts are a rich source of latent spatial information. Extracting such information is useful in query processing, geographical information retrieval (GIR), and recommender systems. In this paper, we propose a novel approach to infer spatial information from salient features of non-spatial nature in text corpora. We propose two methods, namely DCS and RCS, to represent place-based concepts. In addition, two measures, namely the Shannon entropy and the Moran’s I, are proposed to calculate the degree of geo-indicativeness of terms in texts. The methodology is compared with a Latent Dirichlet Allocation (LDA) approach to estimate the accuracy improvement. We evaluated the methods on a dataset of rental property advertisements in Iran and a dataset of Persian Wikipedia articles. The results show that our proposed approach enhances the relative accuracy of predictions by about 10% in case of the renting advertisements and by 13% in case of the Wikipedia articles. The average distance error is about 13.3 km for the advertisements and 10.3 km for the Wikipedia articles, making the method suitable to infer the general region of the city in which a property is located. The proposed methodology is promising for inferring spatial knowledge from textual content that lacks spatial terms. Full article
(This article belongs to the Special Issue Artificial Intelligence and Algorithms with Their Applications)
Show Figures

Figure 1

33 pages, 3148 KiB  
Review
Query Processing of Geosocial Data in Location-Based Social Networks
by Arianna D’Ulizia, Patrizia Grifoni and Fernando Ferri
ISPRS Int. J. Geo-Inf. 2022, 11(1), 19; https://doi.org/10.3390/ijgi11010019 - 30 Dec 2021
Cited by 1 | Viewed by 4098
Abstract
The increasing use of social media and the recent advances in geo-positioning technologies have produced a great amount of geosocial data, consisting of spatial, textual, and social information, to be managed and queried. In this paper, we focus on the issue of query [...] Read more.
The increasing use of social media and the recent advances in geo-positioning technologies have produced a great amount of geosocial data, consisting of spatial, textual, and social information, to be managed and queried. In this paper, we focus on the issue of query processing by providing a systematic literature review of geosocial data representations, query processing methods, and evaluation approaches published over the last two decades (2000–2020). The result of our analysis shows the categories of geosocial queries proposed by the surveyed studies, the query primitives and the kind of access method used to retrieve the result of the queries, the common evaluation metrics and datasets used to evaluate the performance of the query processing methods, and the main open challenges that should be faced in the near future. Due to the ongoing interest in this research topic, the results of this survey are valuable to many researchers and practitioners by gaining an in-depth understanding of the geosocial querying process and its applications and possible future perspectives. Full article
(This article belongs to the Special Issue Social Computing for Geographic Information Science)
Show Figures

Figure 1

11 pages, 1330 KiB  
Article
The Federal Menu Labeling Law and Twitter Discussions about Calories in the United States: An Interrupted Time-Series Analysis
by Yulin Hswen, Alyssa J. Moran, Siona Prasad, Anna Li, Denise Simon, Lauren Cleveland, Jared B. Hawkins, John S. Brownstein and Jason Block
Int. J. Environ. Res. Public Health 2021, 18(20), 10794; https://doi.org/10.3390/ijerph182010794 - 14 Oct 2021
Cited by 3 | Viewed by 2398
Abstract
Public awareness of calories in food sold in retail establishments is a primary objective of the menu labeling law. This study explores the extent to which we can use social media and internet search queries to understand whether the federal calorie labeling law [...] Read more.
Public awareness of calories in food sold in retail establishments is a primary objective of the menu labeling law. This study explores the extent to which we can use social media and internet search queries to understand whether the federal calorie labeling law increased awareness of calories. To evaluate the association of the federal menu labeling law with tweeting about calories we retrieved tweets that contained the term “calorie(s)” from the CompEpi Geo Twitter Database from 1 January through 31 December in 2016 and 2018. Within the same time period, we also retrieved time-series data for search queries related to calories via Google Trends (GT). Interrupted time-series analysis was used to test whether the federal menu labeling law was associated with a change in mentions of “calorie(s)” on Twitter and relative search queries to calories on GT. Before the implementation of the federal calorie labeling law on 7 May 2018, there was a significant decrease in the baseline trend of 4.37 × 10−8 (SE = 1.25 × 10−8, p < 0.001) mean daily ratio of calorie(s) tweets. A significant increase in post-implementation slope of 3.19 × 10−8 (SE = 1.34 × 10−8 , p < 0.018) mean daily ratio of calorie(s) tweets was seen compared to the pre-implementation slope. An interrupted time-series (ITS) analysis showed a small, statistically significant upward trend of 0.0043 (SE = 0.036, p < 0.001) weekly search queries for calories pre-implementation, with no significant level change post-implementation. There was a decrease in trend of 1.22 (SE = 0.27, p < 0.001) in search queries for calories post-implementation. The federal calorie labeling law was associated with a 173% relative increase in the trend of mean daily ratio of tweets and a -28381% relative change in trend for search queries for calories. Twitter results demonstrate an increase in awareness of calories because of the addition of menu labels. Google Trends results imply that fewer people are searching for the calorie content of their meal, which may no longer be needed since calorie information is provided at point of purchase. Given our findings, discussions online about calories may provide a signal of an increased awareness in the implementation of calorie labels. Full article
Show Figures

Figure 1

35 pages, 1404 KiB  
Article
J-CO: A Platform-Independent Framework for Managing Geo-Referenced JSON Data Sets
by Giuseppe Psaila and Paolo Fosci
Electronics 2021, 10(5), 621; https://doi.org/10.3390/electronics10050621 - 7 Mar 2021
Cited by 17 | Viewed by 3124
Abstract
Internet technology and mobile technology have enabled producing and diffusing massive data sets concerning almost every aspect of day-by-day life. Remarkable examples are social media and apps for volunteered information production, as well as Open Data portals on which public administrations publish authoritative [...] Read more.
Internet technology and mobile technology have enabled producing and diffusing massive data sets concerning almost every aspect of day-by-day life. Remarkable examples are social media and apps for volunteered information production, as well as Open Data portals on which public administrations publish authoritative and (often) geo-referenced data sets. In this context, JSON has become the most popular standard for representing and exchanging possibly geo-referenced data sets over the Internet.Analysts, wishing to manage, integrate and cross-analyze such data sets, need a framework that allows them to access possibly remote storage systems for JSON data sets, to retrieve and query data sets by means of a unique query language (independent of the specific storage technology), by exploiting possibly-remote computational resources (such as cloud servers), comfortably working on their PC in their office, more or less unaware of real location of resources. In this paper, we present the current state of the J-CO Framework, a platform-independent and analyst-oriented software framework to manipulate and cross-analyze possibly geo-tagged JSON data sets. The paper presents the general approach behind the J-CO Framework, by illustrating the query language by means of a simple, yet non-trivial, example of geographical cross-analysis. The paper also presents the novel features introduced by the re-engineered version of the execution engine and the most recent components, i.e., the storage service for large single JSON documents and the user interface that allows analysts to comfortably share data sets and computational resources with other analysts possibly working in different places of the Earth globe. Finally, the paper reports the results of an experimental campaign, which show that the execution engine actually performs in a more than satisfactory way, proving that our framework can be actually used by analysts to process JSON data sets. Full article
(This article belongs to the Special Issue Novel Database Systems and Data Mining Algorithms in the Big Data Era)
Show Figures

Figure 1

23 pages, 694 KiB  
Article
Geo-Social Top-k and Skyline Keyword Queries on Road Networks
by Muhammad Attique, Muhammad Afzal, Farman Ali, Irfan Mehmood, Muhammad Fazal Ijaz and Hyung-Ju Cho
Sensors 2020, 20(3), 798; https://doi.org/10.3390/s20030798 - 1 Feb 2020
Cited by 16 | Viewed by 4664
Abstract
The rapid growth of GPS-enabled mobile devices has popularized many location-based applications. Spatial keyword search which finds objects of interest by considering both spatial locations and textual descriptions has become very useful in these applications. The recent integration of social data with spatial [...] Read more.
The rapid growth of GPS-enabled mobile devices has popularized many location-based applications. Spatial keyword search which finds objects of interest by considering both spatial locations and textual descriptions has become very useful in these applications. The recent integration of social data with spatial keyword search opens a new service horizon for users. Few previous studies have proposed methods to combine spatial keyword queries with social data in Euclidean space. However, most real-world applications constrain the distance between query location and data objects by a road network, where distance between two points is defined by the shortest connecting path. This paper proposes geo-social top-k keyword queries and geo-social skyline keyword queries on road networks. Both queries enrich traditional spatial keyword query semantics by incorporating social relevance component. We formalize the proposed query types and appropriate indexing frameworks and algorithms to efficiently process them. The effectiveness and efficiency of the proposed approaches are evaluated using real datasets. Full article
(This article belongs to the Collection Positioning and Navigation)
Show Figures

Figure 1

20 pages, 1166 KiB  
Article
An Efficient Indexing Approach for Continuous Spatial Approximate Keyword Queries over Geo-Textual Streaming Data
by Ze Deng, Meng Wang, Lizhe Wang, Xiaohui Huang, Wei Han, Junde Chu and Albert Y. Zomaya
ISPRS Int. J. Geo-Inf. 2019, 8(2), 57; https://doi.org/10.3390/ijgi8020057 - 28 Jan 2019
Cited by 11 | Viewed by 3853
Abstract
Current social-network-based and location-based-service applications need to handle continuous spatial approximate keyword queries over geo-textual streaming data of high density. The continuous query is a well-known expensive operation. The optimization of continuous query processing is still an open issue. For geo-textual streaming data, [...] Read more.
Current social-network-based and location-based-service applications need to handle continuous spatial approximate keyword queries over geo-textual streaming data of high density. The continuous query is a well-known expensive operation. The optimization of continuous query processing is still an open issue. For geo-textual streaming data, the performance issue is more serious since both location information and textual description need to be matched for each incoming streaming data tuple. The state-of-the-art continuous spatial-keyword query indexing approaches generally lack both support for approximate keyword matching and high-performance processing for geo-textual streaming data. Aiming to tackle this problem, this paper first proposes an indexing approach for efficient supporting of continuous spatial approximate keyword queries by integrating m i n - w i s e signatures into an AP-tree, namely AP-tree + . AP-tree + utilizes the one-permutation m i n - w i s e hashing method to achieve a much lower signature maintenance costs compared with the traditional m i n - w i s e hashing method because it only employs one hashing function instead of dozens. Towards providing a more efficient indexing approach, this paper has explored the feasibility of parallelizing AP-tree + by employing a Graphic Processing Unit (GPU). We mapped the AP-tree + data structure into the GPU’s memory with a variety of one-dimensional arrays to form the GPU-aided AP-tree + . Furthermore, a m i n - w i s e parallel hashing algorithm with a scheme of data parallel and a GPU-CPU data communication method based on a four-stage pipeline way have been used to optimize the performance of the GPU-aided AP-tree + . The experimental results indicate that (1) AP-tree + can reduce the space cost by about 11% compared with MHR-tree, (2) AP-tree + can hold a comparable recall and 5.64× query performance gain compared with MHR-tree while saving 41.66% maintenance cost on average, (3) the GPU-aided AP-tree + can attain an average speedup of 5.76× compared to AP-tree + , and (4) the GPU-CPU data communication scheme can further improve the query performance of the GPU-aided AP-tree + by 39.4%. Full article
Show Figures

Figure 1

21 pages, 596 KiB  
Article
GSMNet: A Hierarchical Graph Model for Moving Objects in Networks
by Hengcai Zhang and Feng Lu
ISPRS Int. J. Geo-Inf. 2017, 6(3), 71; https://doi.org/10.3390/ijgi6030071 - 3 Mar 2017
Cited by 5 | Viewed by 5144
Abstract
Existing data models for moving objects in networks are often limited by flexibly controlling the granularity of representing networks and the cost of location updates and do not encompass semantic information, such as traffic states, traffic restrictions and social relationships. In this paper, [...] Read more.
Existing data models for moving objects in networks are often limited by flexibly controlling the granularity of representing networks and the cost of location updates and do not encompass semantic information, such as traffic states, traffic restrictions and social relationships. In this paper, we aim to fill the gap of traditional network-constrained models and propose a hierarchical graph model called the Geo-Social-Moving model for moving objects in Networks (GSMNet) that adopts four graph structures, RouteGraph, SegmentGraph, ObjectGraph and MoveGraph, to represent the underlying networks, trajectories and semantic information in an integrated manner. The bulk of user-defined data types and corresponding operators is proposed to handle moving objects and answer a new class of queries supporting three kinds of conditions: spatial, temporal and semantic information. Then, we develop a prototype system with the native graph database system Neo4Jto implement the proposed GSMNet model. In the experiment, we conduct the performance evaluation using simulated trajectories generated from the BerlinMOD (Berlin Moving Objects Database) benchmark and compare with the mature MOD system Secondo. The results of 17 benchmark queries demonstrate that our proposed GSMNet model has strong potential to reduce time-consuming table join operations an d shows remarkable advantages with regard to representing semantic information and controlling the cost of location updates. Full article
Show Figures

Figure 1

15 pages, 2415 KiB  
Article
A NoSQL–SQL Hybrid Organization and Management Approach for Real-Time Geospatial Data: A Case Study of Public Security Video Surveillance
by Chen Wu, Qing Zhu, Yeting Zhang, Zhiqiang Du, Xinyue Ye, Han Qin and Yan Zhou
ISPRS Int. J. Geo-Inf. 2017, 6(1), 21; https://doi.org/10.3390/ijgi6010021 - 19 Jan 2017
Cited by 31 | Viewed by 10092
Abstract
With the widespread deployment of ground, air and space sensor sources (internet of things or IoT, social networks, sensor networks), the integrated applications of real-time geospatial data from ubiquitous sensors, especially in public security and smart city domains, are becoming challenging issues. The [...] Read more.
With the widespread deployment of ground, air and space sensor sources (internet of things or IoT, social networks, sensor networks), the integrated applications of real-time geospatial data from ubiquitous sensors, especially in public security and smart city domains, are becoming challenging issues. The traditional geographic information system (GIS) mostly manages time-discretized geospatial data by means of the Structured Query Language (SQL) database management system (DBMS) and emphasizes query and retrieval of massive historical geospatial data on disk. This limits its capability for on-the-fly access of real-time geospatial data for online analysis in real time. This paper proposes a hybrid database organization and management approach with SQL relational databases (RDB) and not only SQL (NoSQL) databases (including the main memory database, MMDB, and distributed files system, DFS). This hybrid approach makes full use of the advantages of NoSQL and SQL DBMS for the real-time access of input data and structured on-the-fly analysis results which can meet the requirements of increased spatio-temporal big data linking analysis. The MMDB facilitates real-time access of the latest input data such as the sensor web and IoT, and supports the real-time query for online geospatial analysis. The RDB stores change information such as multi-modal features and abnormal events extracted from real-time input data. The DFS on disk manages the massive geospatial data, and the extensible storage architecture and distributed scheduling of a NoSQL database satisfy the performance requirements of incremental storage and multi-user concurrent access. A case study of geographic video (GeoVideo) surveillance of public security is presented to prove the feasibility of this hybrid organization and management approach. Full article
(This article belongs to the Special Issue Spatiotemporal Computing for Sustainable Ecosystem)
Show Figures

Figure 1

20 pages, 1310 KiB  
Article
Modeling and Querying Moving Objects with Social Relationships
by Hengcai Zhang, Feng Lu and Jianqiu Xu
ISPRS Int. J. Geo-Inf. 2016, 5(7), 121; https://doi.org/10.3390/ijgi5070121 - 15 Jul 2016
Cited by 7 | Viewed by 5243
Abstract
Current moving-object database (MOD) systems focus on management of movement data, but pay less attention to modelling social relationships between moving objects and spatial-temporal trajectories in an integrated manner. This paper combines moving-object database and social network systems and presents a novel data [...] Read more.
Current moving-object database (MOD) systems focus on management of movement data, but pay less attention to modelling social relationships between moving objects and spatial-temporal trajectories in an integrated manner. This paper combines moving-object database and social network systems and presents a novel data model called Geo-Social-Moving (GSM) that enables the unified management of trajectories, underlying geographical space and social relationships for mass moving objects. A bulk of user-defined data types and corresponding operators are also proposed to facilitate geo-social queries on moving objects. An implementation framework for the GSM model is proposed, and a prototype system based on native Neo4J is then developed with two real-world data sets from the location-based social network systems. Compared with solutions based on traditional extended relational database management systems characterized by time-consuming table join operations, the proposed GSM model characterized by graph traversal is argued to be more powerful in representing mass moving objects with social relationships, and more efficient and stable for geo-social querying. Full article
(This article belongs to the Special Issue Location-Based Services)
Show Figures

Figure 1

34 pages, 1309 KiB  
Article
A Volunteered Geographic Information Framework to Enable Bottom-Up Disaster Management Platforms
by Mohammad Ebrahim Poorazizi, Andrew J.S. Hunter and Stefan Steiniger
ISPRS Int. J. Geo-Inf. 2015, 4(3), 1389-1422; https://doi.org/10.3390/ijgi4031389 - 13 Aug 2015
Cited by 26 | Viewed by 9066
Abstract
Recent disasters, such as the 2010 Haiti earthquake, have drawn attention to the potential role of citizens as active information producers. By using location-aware devices such as smartphones to collect geographic information in the form of geo-tagged text, photos, or videos, and sharing [...] Read more.
Recent disasters, such as the 2010 Haiti earthquake, have drawn attention to the potential role of citizens as active information producers. By using location-aware devices such as smartphones to collect geographic information in the form of geo-tagged text, photos, or videos, and sharing this information through online social media, such as Twitter, citizens create Volunteered Geographic Information (VGI). To effectively use this information for disaster management, we developed a VGI framework for the discovery of VGI. This framework consists of four components: (i) a VGI brokering module to provide a standard service interface to retrieve VGI from multiple resources based on spatial, temporal, and semantic parameters; (ii) a VGI quality control component, which employs semantic filtering and cross-referencing techniques to evaluate VGI; (iii) a VGI publisher module, which uses a service-based delivery mechanism to disseminate VGI, and (iv) a VGI discovery component to locate, browse, and query metadata about available VGI datasets. In a case study we employed a FOSS (Free and Open Source Software) strategy, open standards/specifications, and free/open data to show the utility of the framework. We demonstrate that the framework can facilitate data discovery for disaster management. The addition of quality metrics and a single aggregated source of relevant crisis VGI will allow users to make informed policy choices that could save lives, meet basic humanitarian needs earlier, and perhaps limit environmental and economic damage. Full article
(This article belongs to the Special Issue Open Geospatial Science and Applications)
Show Figures

Figure 1

Back to TopTop