Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (4)

Search Parameters:
Keywords = generalized linear model network (GLMnet)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
28 pages, 5379 KiB  
Article
Influences of Sampling Design and Model Selection on Predictions of Chemical Compounds in Petroferric Formations in the Brazilian Amazon
by Niriele Bruno Rodrigues, Theresa Rocco Barbosa, Helena Saraiva Koenow Pinheiro, Marcelo Mancini, Quentin D. Read, Joshua Blackstock, Edwin H. Winzeler, David Miller, Phillip R. Owens and Zamir Libohova
Remote Sens. 2025, 17(9), 1644; https://doi.org/10.3390/rs17091644 - 6 May 2025
Viewed by 518
Abstract
Morro de Seis Lagos, a region in the Brazilian Amazon, contains a small (less than 1%) formation of siderite carbonatites which is considered to be one of the world’s largest niobium reserves. This highly weathered geological and pedological occurrence makes the site ideal [...] Read more.
Morro de Seis Lagos, a region in the Brazilian Amazon, contains a small (less than 1%) formation of siderite carbonatites which is considered to be one of the world’s largest niobium reserves. This highly weathered geological and pedological occurrence makes the site ideal for studying the pedogenetic process of lateralization and the spatial variability of chemical elements. The aim of this study was to investigate the influences of various sampling combinations (scenarios) derived from three sampling designs on the spatial predictions associated with chemical compounds (Al2O3, Fe2O3, MnO, Nb2O5, TiO2, and SiO2), using multiple machine learning algorithms combined with remotely sensed imagery. The dataset comprised 341 samples from the Geological Survey of Brazil (CPRM). Covariates included remotely sensed data collected from Sentinel-2 MSI, Sentinel-1A, and the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER), and topographic attributes were calculated from a 20 m digital elevation model derived from hydrologic data (HC-DEM). The machine learning algorithms (Generalized Linear Models with Elastic Net Regularization (GLMNET), Nearest Neighbors (KNN), Neural Network (NNET), Random Forest (RF) and Support Vector Machine (SVMRadial) were used in combination with covariates and measured elements at point locations to spatially map the concentrations of these chemical elements. The optimal covariates for modeling were selected using Recursive Feature Elimination (RFE), processing 10 runs for each chemical element. The RF, SVMRadial, and KNN models performed best, followed by the models from the Neural Network group (NNET). The sampling scenarios were not significantly different, based on root mean square error (F = 1.7; p-value = 0.15) and mean absolute error (F = 0.4; p-value = 0.79); however, significant differences were observed in the coefficient of determination (F = 41.2; p-value < 0.00) across all models. Overall, the models performed poorly for all elements, with R2 ranging from 0.07 to 0.27, regardless of sampling scenario (F = 1.6; p-value = 0.08). Relatively, RF, GLMET, and KNN performed better, compared to other models. The terrain attributes were significantly more successful as to the spatial predictions of the elements contained in laterites than were the remote sensing spectral indices, likely due to the fact that the underlying spatial structures of the two formations (laterite and talus) occur at different elevations. Full article
(This article belongs to the Special Issue GIS and Remote Sensing in Soil Mapping and Modeling (Second Edition))
Show Figures

Figure 1

13 pages, 3693 KiB  
Article
The Prediction of Distribution of the Invasive Fallopia Taxa in Slovakia
by Petra Gašparovičová, Michal Ševčík and Stanislav David
Plants 2022, 11(11), 1484; https://doi.org/10.3390/plants11111484 - 31 May 2022
Cited by 7 | Viewed by 2790
Abstract
Invasive species are now considered the second biggest threat for biodiversity and have adverse environmental, economic and social impacts. Understanding its spatial distribution and dynamics is crucial for the development of tools for large-scale mapping, monitoring and management. The aim of this study [...] Read more.
Invasive species are now considered the second biggest threat for biodiversity and have adverse environmental, economic and social impacts. Understanding its spatial distribution and dynamics is crucial for the development of tools for large-scale mapping, monitoring and management. The aim of this study was to predict the distribution of invasive Fallopia taxa in Slovakia and to identify the most important predictors of spreading of these species. We designed models of species distribution for invasive species of FallopiaFallopia japonica—Japanese knotweed, Fallopia sachalinensis—Sakhalin knotweed and their hybrid Fallopia × bohemica—Czech knotweed. We designed 12 models—generalized linear model (GLM), generalized additive model (GAM), classification and regression trees (CART), boosted regression trees (BRT), multivariate adaptive regression spline (MARS), random forests (RF), support vector machine (SVM), artificial neural networks (ANN), maximum entropy (Maxent), penalized maximum likelihood GLM (GLMNET), domain, and radial basis function network (RBF). The accuracy of the models was evaluated using occurrence data for the presence and absence of species. The final simplified logistic regression model showed the three most important prediction variables lead by distances from roads and rails, then type of soil and distances from water bodies. The probability of invasive Fallopia species occurrence was evaluated using Pearson’s chi-squared test (χ21). It significantly decreases with increasing distance from transport lines (χ21 = 118.85, p < 0.001) and depends on soil type (χ21 = 49.56, p < 0.001) and the distance from the water, where increasing the distance decrease the probability (χ21 = 8.95, p = 0.003). Full article
(This article belongs to the Special Issue Modelling Plant Diseases for Precision Crop Protection)
Show Figures

Graphical abstract

19 pages, 1354 KiB  
Article
Optimized Identification of Advanced Chronic Kidney Disease and Absence of Kidney Disease by Combining Different Electronic Health Data Resources and by Applying Machine Learning Strategies
by Christoph Weber, Lena Röschke, Luise Modersohn, Christina Lohr, Tobias Kolditz, Udo Hahn, Danny Ammon, Boris Betz and Michael Kiehntopf
J. Clin. Med. 2020, 9(9), 2955; https://doi.org/10.3390/jcm9092955 - 12 Sep 2020
Cited by 13 | Viewed by 4017
Abstract
Automated identification of advanced chronic kidney disease (CKD ≥ III) and of no known kidney disease (NKD) can support both clinicians and researchers. We hypothesized that identification of CKD and NKD can be improved, by combining information from different electronic health record (EHR) [...] Read more.
Automated identification of advanced chronic kidney disease (CKD ≥ III) and of no known kidney disease (NKD) can support both clinicians and researchers. We hypothesized that identification of CKD and NKD can be improved, by combining information from different electronic health record (EHR) resources, comprising laboratory values, discharge summaries and ICD-10 billing codes, compared to using each component alone. We included EHRs from 785 elderly multimorbid patients, hospitalized between 2010 and 2015, that were divided into a training and a test (n = 156) dataset. We used both the area under the receiver operating characteristic (AUROC) and under the precision-recall curve (AUCPR) with a 95% confidence interval for evaluation of different classification models. In the test dataset, the combination of EHR components as a simple classifier identified CKD ≥ III (AUROC 0.96[0.93–0.98]) and NKD (AUROC 0.94[0.91–0.97]) better than laboratory values (AUROC CKD 0.85[0.79–0.90], NKD 0.91[0.87–0.94]), discharge summaries (AUROC CKD 0.87[0.82–0.92], NKD 0.84[0.79–0.89]) or ICD-10 billing codes (AUROC CKD 0.85[0.80–0.91], NKD 0.77[0.72–0.83]) alone. Logistic regression and machine learning models improved recognition of CKD ≥ III compared to the simple classifier if only laboratory values were used (AUROC 0.96[0.92–0.99] vs. 0.86[0.81–0.91], p < 0.05) and improved recognition of NKD if information from previous hospital stays was used (AUROC 0.99[0.98–1.00] vs. 0.95[0.92–0.97]], p < 0.05). Depending on the availability of data, correct automated identification of CKD ≥ III and NKD from EHRs can be improved by generating classification models based on the combination of different EHR components. Full article
Show Figures

Figure 1

30 pages, 9741 KiB  
Article
Plant Species Discrimination in a Tropical Wetland Using In Situ Hyperspectral Data
by Kurt Prospere, Kurt McLaren and Byron Wilson
Remote Sens. 2014, 6(9), 8494-8523; https://doi.org/10.3390/rs6098494 - 10 Sep 2014
Cited by 73 | Viewed by 10818
Abstract
We investigated the use of full-range (400–2,500 nm) hyperspectral data obtained by sampling foliar reflectances to discriminate 46 plant species in a tropical wetland in Jamaica. A total of 47 spectral variables, including derivative spectra, spectral vegetation indices, spectral position variables, normalized spectra [...] Read more.
We investigated the use of full-range (400–2,500 nm) hyperspectral data obtained by sampling foliar reflectances to discriminate 46 plant species in a tropical wetland in Jamaica. A total of 47 spectral variables, including derivative spectra, spectral vegetation indices, spectral position variables, normalized spectra and spectral absorption features, were used for classifying the 46 species. The Mann–Whitney U-test, paired one-way ANOVA, principal component analysis (PCA), random forest (RF) and a wrapper approach with a support vector machine were used as feature selection methods. Linear discriminant analysis (LDA), an artificial neural network (ANN) and a generalized linear model fitted with elastic net penalties (GLMnet) were then used for species separation. For comparison, the RF classifier (denoted as RFa) was also used to separate the species by using all reflectance spectra and spectral indices, respectively, without applying any feature selection. The RFa classifier was able to achieve 91.8% and 84.8% accuracy with importance-ranked spectral indices and reflectance spectra, respectively. The GLMnet classifier produced the lowest overall accuracies for feature-selected reflectance spectra data (52–77%) when compared with the LDA and ANN methods. However, when feature-selected spectral indices were used, the GLMnet produced overall accuracies ranging from 79 to 88%, which were the highest among the three classifiers that used feature-selected data. A total of 12 species recorded a 100% producer accuracy, but with spectral indices, and an additional 8 species had perfect producer accuracies, regardless of the input features. The results of this study suggest that the GLMnet classifier can be used, particularly on feature-selected spectral indices, to discern vegetation in wetlands. However, it might be more efficient to use RFa without feature-selected variables, especially for spectral indices. Full article
Show Figures

Graphical abstract

Back to TopTop