Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (1)

Search Parameters:
Keywords = functional Cu2O@CuS nanocube nanocomposite

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 2106 KB  
Article
Oxygen Vacancy-Engineered Cu2O@CuS p–p Heterojunction Gas Sensor for Highly Sensitive n-Butanol Detection
by Di Zhang, Zhengfang Qu, Chenchen Li, Huan Wang, Yong Zhang, Xiang Ren and Rui Xu
Chemosensors 2025, 13(9), 324; https://doi.org/10.3390/chemosensors13090324 - 1 Sep 2025
Viewed by 843
Abstract
The sensitive detection of n-butanol is of high scientific and practical importance for ensuring safety in industrial production. In this study, hollow Cu2O@CuS core–shell nanocubic heterostructures were fabricated via a multistep templating method. The Cu2O@CuS heterostructures demonstrated exceptional performance, [...] Read more.
The sensitive detection of n-butanol is of high scientific and practical importance for ensuring safety in industrial production. In this study, hollow Cu2O@CuS core–shell nanocubic heterostructures were fabricated via a multistep templating method. The Cu2O@CuS heterostructures demonstrated exceptional performance, with an ultrahigh Brunauer–Emmett–Teller specific surface area that provided abundant active sites and a unique hollow architecture that enhanced mass transport and improved gas adsorption/desorption kinetics. High-density surface oxygen vacancies on the Cu2O@CuS nanocubic heterostructures provide a key structural basis for the preferential adsorption of n-butanol molecules on its surface. The p–p heterojunction configuration further enhanced selective sensor response by optimizing the charge carrier separation and band structure modulation. The developed sensor achieved a detection limit of 3.18 ppm while exhibiting outstanding sensitivity, stability, and response time, meeting the stringent requirements for n-butanol detection in both industrial and agricultural settings. This work provides new insights on how to design materials for gas sensors. Full article
(This article belongs to the Special Issue Functionalized Material-Based Gas Sensing)
Show Figures

Figure 1

Back to TopTop