Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (3)

Search Parameters:
Keywords = fully connected “deep” neural network (FCDN)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 9594 KiB  
Article
Applying Deep Learning to Clear-Sky Radiance Simulation for VIIRS with Community Radiative Transfer Model—Part 1: Develop AI-Based Clear-Sky Mask
by Xingming Liang and Quanhua Liu
Remote Sens. 2021, 13(2), 222; https://doi.org/10.3390/rs13020222 - 11 Jan 2021
Cited by 8 | Viewed by 2759
Abstract
A fully connected deep neural network (FCDN) clear-sky mask (CSM) algorithm (FCDN_CSM) was developed to assist the FCDN-based Community Radiative Transfer Model (FCDN_CRTM) to reproduce the Visible Infrared Imaging Radiometer Suite (VIIRS) clear-sky radiances in five thermal emission M (TEB/M) bands. The model [...] Read more.
A fully connected deep neural network (FCDN) clear-sky mask (CSM) algorithm (FCDN_CSM) was developed to assist the FCDN-based Community Radiative Transfer Model (FCDN_CRTM) to reproduce the Visible Infrared Imaging Radiometer Suite (VIIRS) clear-sky radiances in five thermal emission M (TEB/M) bands. The model design was referenced and enhanced from its earlier version (version 1), and was trained and tested in the global ocean clear-sky domain using six dispersion days’ data from 2019 to 2020 as inputs and a modified NOAA Advanced Clear-Sky Processor over Ocean (ACSPO) CSM product as reference labels. The improved FCDN_CSM (version 2) was further enhanced by including daytime data, which was not collected in version 1. The trained model was then employed to predict VIIRS CSM over multiple days in 2020 as an accuracy and stability check. The results were validated against the biases between the sensor observations and CRTM calculations (O-M). The objectives were to (1) enhance FCDN_CSM performance to include daytime analysis, and improve model stability, accuracy, and efficiency; and (2) further understand the model performance based on a combination of the statistics and physical interpretation. According to the analyses of the F-score, the prediction result showed ~96% and ~97% accuracy for day and night, respectively. The type Cloud was the most accurate, followed by Clear-Sky. The O-M mean biases are comparable to the ACSPO CSM for all bands, both day and night. The standard deviations (STD) were slightly degraded in long wave IRs (M14, M15, and M16), mainly due to contamination by a 3% misclassification of the type Cloud, which may require the model to be further fine-tuned to improve prediction accuracy in the future. However, the consistent O-M means and STDs persist throughout the prediction period, suggesting that FCDN_CSM version 2 is robust and does not have significant overfitting. Given its high F-scores, spatial and long-term stability for both day and night, high efficiency, and acceptable O-M means and STDs, FCDN_CSM version 2 is deemed to be ready for use in the FCDN_CRTM. Full article
(This article belongs to the Section AI Remote Sensing)
Show Figures

Graphical abstract

19 pages, 6353 KiB  
Article
Applying Deep Learning to Clear-Sky Radiance Simulation for VIIRS with Community Radiative Transfer Model—Part 2: Model Architecture and Assessment
by Xingming Liang and Quanhua (Mark) Liu
Remote Sens. 2020, 12(22), 3825; https://doi.org/10.3390/rs12223825 - 21 Nov 2020
Cited by 13 | Viewed by 3655
Abstract
A fully connected “deep” neural network algorithm with the Community Radiative Transfer Model (FCDN_CRTM) is proposed to explore the efficiency and accuracy of reproducing the Visible Infrared Imaging Radiometer Suite (VIIRS) radiances in five thermal emission M (TEB/M) bands. The model was trained [...] Read more.
A fully connected “deep” neural network algorithm with the Community Radiative Transfer Model (FCDN_CRTM) is proposed to explore the efficiency and accuracy of reproducing the Visible Infrared Imaging Radiometer Suite (VIIRS) radiances in five thermal emission M (TEB/M) bands. The model was trained and tested in the nighttime global ocean clear-sky domain, in which the VIIRS observation minus CRTM (O-M) biases have been well validated in recent years. The atmosphere profile from the European Centre for Medium-Range Weather Forecasts (ECMWF) and sea surface temperature (SST) from the Canadian Meteorology Centre (CMC) were used as FCDN_CRTM input, and the CRTM-simulated brightness temperatures (BTs) were defined as labels. Six dispersion days’ data from 2019 to 2020 were selected to train the FCDN_CRTM, and the clear-sky pixels were identified by an enhanced FCDN clear-sky mask (FCDN_CSM) model, which was demonstrated in Part 1. The trained model was then employed to predict CRTM BTs, which were further validated with the CRTM BTs and the VIIRS sensor data record (SDR) for both efficiency and accuracy. With iterative refinement of the model design and careful treatment of the input data, the agreement between the FCDN_CRTM and the CRTM was generally good, including the satellite zenith angle and column water vapor dependencies. The mean biases of the FCDN_CRTM minus CRTM (F-C) were typically ~0.01 K for all five bands, and the high accuracy persisted during the whole analysis period. Moreover, the standard deviations (STDs) were generally less than 0.1 K and were consistent for approximately half a year, before they significantly degraded. The validation with VIIRS SDR data revealed that both the predicted mean biases and the STD of the VIIRS observation minus FCDN_CRTM (V-F) were comparable with the VIIRS minus direct CRTM simulation (V-C). Meanwhile, both V-F and V-C exhibited consistent global geophysical and statistical distribution, as well as stable long-term performance. Furthermore, the FCDN_CRTM processing time was more than 40 times faster than CRTM simulation. The highly efficient, accurate, and stable performances indicate that the FCDN_CRTM is a potential solution for global and real-time monitoring of sensor observation minus model simulation, particularly for high-resolution sensors. Full article
Show Figures

Figure 1

15 pages, 2271 KiB  
Article
A Deep Learning Trained Clear-Sky Mask Algorithm for VIIRS Radiometric Bias Assessment
by Xingming Liang, Quanhua Liu, Banghua Yan and Ninghai Sun
Remote Sens. 2020, 12(1), 78; https://doi.org/10.3390/rs12010078 - 24 Dec 2019
Cited by 8 | Viewed by 3379
Abstract
Clear-sky mask (CSM) is a crucial influence on the calculating accuracy of the sensor radiometric biases for spectral bands of visible, infrared, and microwave regions. In this study, a fully connected deep neural network (FCDN) was proposed to generate CSM for the Visible [...] Read more.
Clear-sky mask (CSM) is a crucial influence on the calculating accuracy of the sensor radiometric biases for spectral bands of visible, infrared, and microwave regions. In this study, a fully connected deep neural network (FCDN) was proposed to generate CSM for the Visible Infrared Imaging Radiometer Suite (VIIRS) onboard Suomi National Polar-Orbiting Partnership (S-NPP) and NOAA-20 satellites. The model, well-trained by S-NPP data, was used to generate both S-NPP and NOAA-20 CSMs for the independent data, and the results were validated against the biases between the sensor observations and Community Radiative Transfer Model (CRTM) calculations (O-M). The preliminary result shows that the FCDN-CSM model works well for identifying clear-sky pixels. Both O-M mean biases and standard deviations were comparable with the Advance Clear-Sky Processor over Ocean (ACSPO) and were significantly better than a prototype cloud mask (PCM) and the case without a clear-sky check. In addition, by replacing CRTM brightness temperatures (BTs) with the atmosphere air temperature and water vapor contents as input features, the FCDN-CSM exhibits its potential to generate fast and accurate VIIRS CSM onboard follow-up Joint Polar Satellite System (JPSS) satellites for sensor calibration and validation before the physics-based CSM is available. Full article
(This article belongs to the Special Issue Satellite Remote Sensing for Tropical Meteorology and Climatology)
Show Figures

Figure 1

Back to TopTop