Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (5)

Search Parameters:
Keywords = full frequency reuse (FFR)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 946 KiB  
Article
AoI Analysis of Satellite–UAV Synergy Real-Time Remote Sensing System
by Libo Wang, Xiangyin Zhang, Kaiyu Qin, Zhuwei Wang, Jiayi Zhou and Deyu Song
Remote Sens. 2024, 16(17), 3305; https://doi.org/10.3390/rs16173305 - 5 Sep 2024
Cited by 2 | Viewed by 1820
Abstract
With the rapid development of space–air–ground integrated networks (SAGIN), the synergy between the satellite and unmanned aerial vehicles (UAVs) in sensing environmental status information reveals substantial potential. In SAGIN, applications such as disaster response and military operations require fresh status information to respond [...] Read more.
With the rapid development of space–air–ground integrated networks (SAGIN), the synergy between the satellite and unmanned aerial vehicles (UAVs) in sensing environmental status information reveals substantial potential. In SAGIN, applications such as disaster response and military operations require fresh status information to respond effectively. The freshness of information, quantified by the age of information (AoI) metric, is crucial for an effective response. Therefore, it is urgent to investigate the AoI in real-time remote sensing systems leveraging satellite–UAV synergy. To this end, we first establish a comprehensive system model, corresponding to the satellite–UAV “multiscale explanation” synergy remote sensing system in SAGIN, in which we focus on the typical information transmission and fusion strategies of the system, the analysis framework of AoI, and the temporal evolution of AoI. Subsequently, the time-varying process of the system model is transformed into a corresponding finite-states continuous-time Markov chain, enabling a precise analysis of its stochastic behavior. By employing the stochastic hybrid system (SHS) approach, the moment generating functions (MGFs) and mean AoI, offering quantitative insights into the freshness of status information, are derived. Following this, a comparative analysis of AoI under different queuing disciplines, highlighting their respective performance characteristics, is conducted. Furthermore, considering transmit power and bandwidth constraints of the system, the AoI performances under full frequency reuse (FFR), and frequency division multiple access (FDMA) strategies are analyzed. The energy advantage and spectrum advantage associated with AoI are also examined to explore the superior AoI-related performance of the FFR strategy in SAGIN. Full article
Show Figures

Figure 1

12 pages, 750 KiB  
Article
Performance Analysis of RIS-Assisted SatComs Based on a ZFBF and Co-Phasing Scheme
by Minchae Jung, Taehyoung Kim and Hyukmin Son
Mathematics 2024, 12(8), 1257; https://doi.org/10.3390/math12081257 - 21 Apr 2024
Cited by 1 | Viewed by 1334
Abstract
In recent high-throughput satellite communication (SatCom) systems, the use of reconfigurable intelligent surfaces (RISs) has emerged as a promising solution to improve spectral efficiency and extend coverage in areas with limited terrestrial network access. However, the RIS may amplify the inter-beam interference (IBI) [...] Read more.
In recent high-throughput satellite communication (SatCom) systems, the use of reconfigurable intelligent surfaces (RISs) has emerged as a promising solution to improve spectral efficiency and extend coverage in areas with limited terrestrial network access. However, the RIS may amplify the inter-beam interference (IBI) caused by multibeam transmission at the satellite, and multiple RISs can also cause inter-RIS interference (IRI) to terrestrial users. In this paper, the performance of the RIS-assisted SatCom system is asymptotically analyzed for both full and partial channel state information (CSI) scenarios. In particular, zero-forcing beamforming is considered as the active beamforming for data transmission, while the co-phasing scheme is considered as the passive beamforming for RIS reflection. Based on the asymptotic analyses, deterministic active and passive beamforming techniques using partial CSI are proposed that can gradually eliminate both IBI and IRI, ultimately achieving ideal performance. Simulation results validate the accuracy of asymptotic analyses and demonstrate the superiority of deterministic active and passive beamforming techniques using partial CSI. The simulation results also confirm that the proposed beamforming can achieve approximately 92.8% of the ideal performance, even though it only requires partial CSI. Full article
Show Figures

Figure 1

17 pages, 606 KiB  
Article
Optimal Coverage of Full Frequency Reuse in FFR Networks in Relation to Power Scaling of a Base Station
by Minyoung Seo, Seok-Ho Chang, Jong-Man Lee, Ki-Hun Kim, Hyun Park and Sang-Hyo Kim
Sensors 2023, 23(21), 8925; https://doi.org/10.3390/s23218925 - 2 Nov 2023
Cited by 1 | Viewed by 1776
Abstract
As a strategy to coordinate inter-cell interference in cellular networks, a fractional frequency reuse (FFR) system is proposed, in which the frequency bandwidth is split into two orthogonal bands; users staying near the center of a FFR cell use the band with a [...] Read more.
As a strategy to coordinate inter-cell interference in cellular networks, a fractional frequency reuse (FFR) system is proposed, in which the frequency bandwidth is split into two orthogonal bands; users staying near the center of a FFR cell use the band with a frequency reuse (FR) factor of one (i.e., full FR), and users located close to the cell edge utilize the band with a FR factor greater than one (i.e., partial FR). Full FR coverage, which identifies full FR and partial FR regions (that is, near-center and near-edge regions) within a FFR cell, has a crucial effect on system performance. Some of the authors of this paper recently investigated the optimization of full FR coverage to maximize system throughput. They analytically showed that under the constraint of satisfying a specified target outage probability, the optimal full FR coverage is a non-increasing function of base station power when all base station powers in the cellular network are scaled at an equal rate. Interestingly, in this paper, it is proven that as the power of a single base station is scaled, the optimal full FR coverage in that cell is a non-decreasing function of base station power. Our results provide useful insight into the design of full FR coverage in relation to the transmit power of a base station. It gives a deeper understanding of the intricate relationship between important FFR system parameters of base station power and full FR coverage. Full article
(This article belongs to the Section Communications)
Show Figures

Figure 1

17 pages, 1210 KiB  
Article
Auction Mechanism-Based Sectored Fractional Frequency Reuse for Irregular Geometry Multicellular Networks
by Rahat Ullah, Abdullah Gani, Muhammad Shiraz, Imran Khan Yousufzai and Khalid Zaman
Electronics 2022, 11(15), 2281; https://doi.org/10.3390/electronics11152281 - 22 Jul 2022
Cited by 5 | Viewed by 1885
Abstract
Modern cellular systems have adopted dense frequency reuse to address the growing amount of mobile data traffic. The system capacity is improved accordingly; however, this is at the cost of augmented Inter-Cell Interference (ICI). Recently, Fractional Frequency Reuse (FFR) has emerged as an [...] Read more.
Modern cellular systems have adopted dense frequency reuse to address the growing amount of mobile data traffic. The system capacity is improved accordingly; however, this is at the cost of augmented Inter-Cell Interference (ICI). Recently, Fractional Frequency Reuse (FFR) has emerged as an efficient ICI management scheme in Orthogonal Frequency-Division Multiple Access (OFDMA)-based cellular systems. However, the FFR scheme that leads to optimized spectrum allocation for individual users in the irregular geometry networks is not considered in the literature. Meanwhile, in the practical wireless scenario, the users are non-cooperative and want to maximize their demands. A game-theoretic Auction Mechanism-based Sectored-FFR (AMS-FFR) scheme is proposed in this paper to optimally distribute the bandwidth resources to the individual users in the realistic multicellular network deployment. In the proposed auction mechanism, the Base Station (BS) acts as an auctioneer and is the owner of sub-carriers. The users are permitted to bid for a bundle of sub-carriers corresponding to their traffic requirements. The Monte Carlo simulation results show that the presented AMS-FFR scheme outperforms the prevailing FFR schemes in terms of achievable throughput by 65% and 46% compared to the basic FFFR and dynamic FFR-3 schemes, respectively. Moreover, the average sum rate along with the user satisfaction is significantly increased while considering a full traffic load. Full article
(This article belongs to the Section Microwave and Wireless Communications)
Show Figures

Figure 1

20 pages, 1517 KiB  
Article
C-V2X Centralized Resource Allocation with Spectrum Re-Partitioning in Highway Scenario
by Saif Sabeeh, Krzysztof Wesołowski and Paweł Sroka
Electronics 2022, 11(2), 279; https://doi.org/10.3390/electronics11020279 - 16 Jan 2022
Cited by 18 | Viewed by 3365
Abstract
Cellular Vehicle-to-Everything communication is an important scenario of 5G technologies. Modes 3 and 4 of the wireless systems introduced in Release 14 of 3GPP standards are intended to support vehicular communication with and without cellular infrastructure. In the case of Mode 3, dynamic [...] Read more.
Cellular Vehicle-to-Everything communication is an important scenario of 5G technologies. Modes 3 and 4 of the wireless systems introduced in Release 14 of 3GPP standards are intended to support vehicular communication with and without cellular infrastructure. In the case of Mode 3, dynamic resource selection and semi-persistent resource scheduling algorithms result in a signalling cost problem between vehicles and infrastructure, therefore, we propose a means to decrease it. This paper employs Re-selection Counter in centralized resource allocation as a decremental counter of new resource requests. Furthermore, two new spectrum re-partitioning and frequency reuse techniques in Roadside Units (RSUs) are considered to avoid resource collisions and diminish high interference impact via increasing the frequency reuse distance. The two techniques, full and partial frequency reuse, partition the bandwidth into two sub-bands. Two adjacent RSUs apply these sub-bands with the Full Frequency Reuse (FFR) technique. In the Partial Frequency Reuse (PFR) technique, the sub-bands are further re-partitioned among vehicles located in the central and edge parts of the RSU coverage. The sub-bands assignment in the nearest RSUs using the same sub-bands is inverted concerning the current RSU to increase the frequency reuse distance. The PFR technique shows promising results compared with the FFR technique. Both techniques are compared with the single band system for different vehicle densities. Full article
(This article belongs to the Special Issue Problems and Challenges of Physical Layer in 5G Systems)
Show Figures

Figure 1

Back to TopTop