Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = frequency domain multipoint kurtosis

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 7674 KB  
Article
An Adaptive Signal Denoising Method Based on Reweighted SVD for the Fault Diagnosis of Rolling Bearings
by Baoxiang Wang and Chuancang Ding
Sensors 2025, 25(8), 2470; https://doi.org/10.3390/s25082470 - 14 Apr 2025
Cited by 8 | Viewed by 1099
Abstract
Due to the harsh and complex operating conditions, rolling element bearings (REBs) are prone to failures, which can result in significant economic losses and catastrophic breakdowns. To efficiently extract weak fault features from raw signals, singular value decomposition (SVD)-based signal denoising methods have [...] Read more.
Due to the harsh and complex operating conditions, rolling element bearings (REBs) are prone to failures, which can result in significant economic losses and catastrophic breakdowns. To efficiently extract weak fault features from raw signals, singular value decomposition (SVD)-based signal denoising methods have been widely adopted in the field of rolling bearing fault diagnosis. In traditional SVD-based methods, singular components (SCs) with significant singular values are selected to reconstruct the denoized signal. However, this approach often overlooks low-energy SCs that contain important fault information, leading to inaccurate diagnosis. To address this issue, we propose a new selection scheme based on frequency domain multipoint kurtosis (FDMK), along with a reweighting strategy based on FDMK to further emphasize weak fault features. In addition, the estimation process of fault characteristic frequency is introduced, allowing FDMK to be calculated without prior information. The proposed FDMK-SVD can adaptively extract periodic fault features and accurately identify the health condition of REBs. The effectiveness of FDMK-SVD is validated using both simulated and experimental data obtained from a locomotive bearing test rig. The results show that FDMK-SVD can effectively extract fault features from raw vibration signals, even in the presence of severe background noise and other types of interferences. Full article
Show Figures

Figure 1

20 pages, 9134 KB  
Article
The Mkurtogram: A Novel Method to Select the Optimal Frequency Band in the AC Domain for Railway Wheelset Bearings Fault Diagnosis
by Wenpeng Liu, Shaopu Yang, Qiang Li, Yongqiang Liu, Rujiang Hao and Xiaohui Gu
Appl. Sci. 2021, 11(1), 9; https://doi.org/10.3390/app11010009 - 22 Dec 2020
Cited by 15 | Viewed by 3122
Abstract
A wheelset bearing is one of the main components of the train bogie frame. The early fault detection of the wheelset bearing is quite important to ensure the safety of the train. Among numerous diagnostic methods, envelope analysis is one of the most [...] Read more.
A wheelset bearing is one of the main components of the train bogie frame. The early fault detection of the wheelset bearing is quite important to ensure the safety of the train. Among numerous diagnostic methods, envelope analysis is one of the most effective approaches in the detection of bearing faults which has been amply applied, but its validity greatly depends on the informative frequency band (IFB) determined. For the wheelset bearing faulty signal, it is often difficult to identify the IFB and extract fault characteristics due to the influence of complex operating conditions. To address this problem, a novel method to select optimal IFB, called the Mkurtogram, is proposed for railway wheelset bearings fault diagnosis. It takes the multipoint kurtosis (Mkurt) of unbiased autocorrelation (AC) of the squared envelope signal generated from sub-bands as assessment indicator for the first time. The fundamental concept which inspires this proposed method is to make full use of regular periodicity of AC of squared envelope signal. In the AC domain, the impulsiveness and periodicity, two distinctive signatures of the repetitive transients, have achieved a united representation by Mkurt. A simulated signal with multiple interferences and two experimental signals collected from wheelset bearings are applied to verify its performances and advantages. The results indicate that the proposed method is more effective to extract the wheelset bearings fault feature under complex interferences. It can not only decrease the influence of large impulse interference and the discrete harmonics interference, but also effectively overcome the influence of amplitude fluctuation caused by variable working conditions. Moreover, based on the periodic directivity of Mkurt, the proposed method also can be applied to the compound faults diagnosis of the wheelset bearing. Full article
(This article belongs to the Special Issue Monitoring and Maintenance Systems for Railway Infrastructure)
Show Figures

Figure 1

Back to TopTop