Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (3)

Search Parameters:
Keywords = free induction decay chemical shift imaging

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 2328 KiB  
Article
Baseline Correction of the Human 1H MRS(I) Spectrum Using T2* Selective Differential Operators in the Frequency Domain
by Sang-Han Choi, Yeun-Chul Ryu and Jun-Young Chung
Metabolites 2022, 12(12), 1257; https://doi.org/10.3390/metabo12121257 - 14 Dec 2022
Viewed by 1205
Abstract
The baseline distortion caused by water and fat signals is a crucial issue in the 1H MRS(I) study of the human brain. This paper suggests an effective and reliable preprocessing technique to calibrate the baseline distortion caused by the water and fat [...] Read more.
The baseline distortion caused by water and fat signals is a crucial issue in the 1H MRS(I) study of the human brain. This paper suggests an effective and reliable preprocessing technique to calibrate the baseline distortion caused by the water and fat signals exhibited in the MRS spectral signal. For the preprocessing, we designed a T2* (or linewidth within the spectral signal) selective filter for the MRS(I) data based on differential filtering within the frequency domain. The number and types for the differential filtering were determined by comparing the T2* selectivity profile of each differential operator with the T2* profile of the metabolites to be suppressed within the MRS(I) data. In the performance evaluation of the proposed differential filtering, the simulation data for MRS spectral signals were used. Furthermore, the spectral signal of the human 1H MRSI data obtained by 2D free induction decay chemical shift imaging with a typical water suppression technique was also used in the performance evaluation. The absolute values of the average of the filtered dataset were quantitatively analyzed using the LCModel software. With the suggested T2* selective (not frequency selective) filtering technique, in the simulated MRS data, we removed the metabolites from the simulated MRS(I) spectral signal baseline distorted by the water and fat signal observed in the most frequency band. Moreover, in the obtained MRSI data, the quantitative analysis results for the metabolites of interest showed notable improvement in the uncertainty estimation accuracy, the CRLB (Cramer-Rao Lower Bound) levels. Full article
(This article belongs to the Section Bioinformatics and Data Analysis)
Show Figures

Figure 1

14 pages, 3342 KiB  
Article
Development of a Proton-Frequency-Transparent Birdcage Radiofrequency Coil for In Vivo 13C MRS/MRSI Study in a 3.0 T MRI System
by Jun-Sik Yoon, Jong-Min Kim, Han-Jae Chung, You-Jin Jeong, Gwang-Woo Jeong, Ilwoo Park, Gwang-Won Kim and Chang-Hyun Oh
Appl. Sci. 2021, 11(23), 11445; https://doi.org/10.3390/app112311445 - 2 Dec 2021
Cited by 3 | Viewed by 2548
Abstract
A proton-frequency-transparent (PFT) birdcage RF coil that contains carbon-proton switching circuits (CPSCs) is presented to acquire 13C MR signals, which, in turn, enable 1H imaging with existing 1H RF coils without being affected by a transparent 13C birdcage RF [...] Read more.
A proton-frequency-transparent (PFT) birdcage RF coil that contains carbon-proton switching circuits (CPSCs) is presented to acquire 13C MR signals, which, in turn, enable 1H imaging with existing 1H RF coils without being affected by a transparent 13C birdcage RF coil. CPSCs were installed in the PFT 13C birdcage RF coil to cut the RF coil circuits during 1H MR imaging. Finite-difference time-domain (FDTD) electromagnetic (EM) simulations were performed to verify the performance of the proposed CPSCs. The performance of the PFT 13C birdcage RF coil with CPSCs was verified via phantom and in vivo MR studies. In the phantom MR studies, 1H MR images and 13C MR spectra were acquired and compared with each other using the 13C birdcage RF coil with and without the CPSCs. For the in vivo MR studies, hyperpolarized 13C cardiac MRS and MRSI of swine were performed. The proposed PFT 13C birdcage RF coil with CPSCs led to a percent image uniformity (PIU) reduction of 1.53% in the proton MR images when compared with the case without it. FDTD EM simulations revealed PIU reduction of 0.06% under the same conditions as the phantom MR studies. Furthermore, an SNR reduction of 5.5% was observed at 13C MR spectra of corn-oil phantom using the PFT 13C birdcage RF coil with CPSCs compared with that of the 13C birdcage RF coil without CPSCs. Utilizing the PFT 13C birdcage RF coil, 13C-enriched compounds were successfully acquired via in vivo hyperpolarized 13C MRS/MRSI experiments. In conclusion, the applicability and utility of the proposed 16-leg low-pass PFT 13C birdcage RF coil with CPSCs were verified via 1H MR imaging and hyperpolarized 13C MRS/MRSI studies using a 3.0 T MRI system. Full article
Show Figures

Figure 1

8 pages, 6029 KiB  
Article
Fast Padé Transform Accelerated CSI for Hyperpolarized MRS
by Esben Szocska Søvsø Hansen, Sun Kim, Jack J. Miller, Marcus Geferath, Glen Morrell and Christoffer Laustsen
Tomography 2016, 2(2), 117-124; https://doi.org/10.18383/j.tom.2016.00154 - 1 Jun 2016
Cited by 7 | Viewed by 1230
Abstract
The fast Padé transform (FPT) is a method of spectral analysis that can be used to reconstruct nuclear magnetic resonance spectra from truncated free induction decay signals with superior robustness and spectral resolution compared with conventional Fourier analysis. The aim of this study [...] Read more.
The fast Padé transform (FPT) is a method of spectral analysis that can be used to reconstruct nuclear magnetic resonance spectra from truncated free induction decay signals with superior robustness and spectral resolution compared with conventional Fourier analysis. The aim of this study is to show the utility of FPT in reducing of the scan time required for hyperpolarized 13C chemical shift imaging (CSI) without sacrificing the ability to resolve a full spectrum. Simulations, phantom, and in vivo hyperpolarized [1-13C] pyruvate CSI data were processed with FPT and compared with conventional analysis methods. FPT shows improved stability and spectral resolution on truncated data compared with the fast Fourier transform and shows results that are comparable to those of the model-based fitting methods, enabling a reduction in the needed acquisition time in 13C CSI experiments. Using FPT can reduce the readout length in the spectral dimension by 2-6 times in 13C CSI compared with conventional Fourier analysis without sacrificing the spectral resolution. This increased speed is crucial for 13C CSI because T1 relaxation considerably limits the available scan time. In addition, FPT can also yield direct quantification of metabolite concentration without the additional peak analysis required in conventional Fourier analysis. Full article
Back to TopTop