Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (5)

Search Parameters:
Keywords = fragrance pattern recognition

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 2526 KB  
Article
Compositional Analysis of Four Kinds of Citrus Fruits with an NMR-Based Method for Understanding Nutritional Value and Rational Utilization: From Pericarp to Juice
by Yong Pei, Chenxi He, Huili Liu, Guiping Shen and Jianghua Feng
Molecules 2022, 27(8), 2579; https://doi.org/10.3390/molecules27082579 - 16 Apr 2022
Cited by 30 | Viewed by 5331
Abstract
Citrus is one of the most important economic crops and is widely distributed across the monsoon region. Citrus fruits are deeply loved by consumers because of their special color, fragrance and high nutritional value. However, their health benefits have not been fully understood, [...] Read more.
Citrus is one of the most important economic crops and is widely distributed across the monsoon region. Citrus fruits are deeply loved by consumers because of their special color, fragrance and high nutritional value. However, their health benefits have not been fully understood, especially the pericarps of citrus fruits which have barely been utilized due to their unknown chemical composition. In the present study, the pericarp and juices of four typical varieties of citrus fruits (lemon, dekopon, sweet orange and pomelo) were analyzed by NMR spectroscopy combined with pattern recognition. A total of 62 components from the citrus juices and 87 components from the citrus pericarps were identified and quantified, respectively. The different varieties of the citrus fruits could be distinguished from the others, and the chemical markers in each citrus juice and pericarp were identified by a combination of univariate and multivariate statistical analyses. The nutritional analysis of citrus juices offers favorable diet recommendations for human consumption and data guidance for their potential medical use, and the nutritional analysis of citrus pericarps provides a data reference for the subsequent comprehensive utilization of citrus fruits. Our results not only provide an important reference for the potential nutritional and medical values of citrus fruits but also provide a feasible platform for the traceability analysis, adulteration identification and chemical composition analysis of other fruits. Full article
(This article belongs to the Special Issue NMR-Based Metabolomics and Human Health)
Show Figures

Figure 1

15 pages, 2481 KB  
Article
HS–SPME–GC–MS and Electronic Nose Reveal Differences in the Volatile Profiles of Hedychium Flowers
by Yiwei Zhou, Farhat Abbas, Zhidong Wang, Yunyi Yu, Yuechong Yue, Xinyue Li, Rangcai Yu and Yanping Fan
Molecules 2021, 26(17), 5425; https://doi.org/10.3390/molecules26175425 - 6 Sep 2021
Cited by 39 | Viewed by 5812
Abstract
Floral fragrance is one of the most important characteristics of ornamental plants and plays a pivotal role in plant lifespan such as pollinator attraction, pest repelling, and protection against abiotic and biotic stresses. However, the precise determination of floral fragrance is limited. In [...] Read more.
Floral fragrance is one of the most important characteristics of ornamental plants and plays a pivotal role in plant lifespan such as pollinator attraction, pest repelling, and protection against abiotic and biotic stresses. However, the precise determination of floral fragrance is limited. In the present study, the floral volatile compounds of six Hedychium accessions exhibiting from faint to highly fragrant were comparatively analyzed via gas chromatography–mass spectrometry (GC–MS) and Electronic nose (E-nose). A total of 42 volatile compounds were identified through GC–MS analysis, including monoterpenoids (18 compounds), sesquiterpenoids (12), benzenoids/phenylpropanoids (8), fatty acid derivatives (2), and others (2). In Hedychium coronarium ‘ZS’, H. forrestii ‘Gaoling’, H. ‘Jin’, H. ‘Caixia’, and H. ‘Zhaoxia’, monoterpenoids were abundant, while sesquiterpenoids were found in large quantities in H. coccineum ‘KMH’. Hierarchical clustering analysis (HCA) divided the 42 volatile compounds into four different groups (I, II, III, IV), and Spearman correlation analysis showed these compounds to have different degrees of correlation. The E-nose was able to group the different accessions in the principal component analysis (PCA) corresponding to scent intensity. Furthermore, the pattern-recognition findings confirmed that the E-nose data validated the GC–MS results. The partial least squares (PLS) analysis between floral volatile compounds and sensors suggested that specific sensors were highly sensitive to terpenoids. In short, the E-nose is proficient in discriminating Hedychium accessions of different volatile profiles in both quantitative and qualitative aspects, offering an accurate and rapid reference technique for future applications. Full article
(This article belongs to the Special Issue Recent Discoveries and New Approaches to the Study of Plant Volatiles)
Show Figures

Figure 1

10 pages, 1482 KB  
Article
Detection of Odorant Molecules in the Gaseous Phase Using α-, β-, and γ-Cyclodextrin Films on a Quartz Crystal Microbalance
by Kai Sasaki, Hiroyuki Furusawa, Kuniaki Nagamine and Shizuo Tokito
Technologies 2018, 6(3), 63; https://doi.org/10.3390/technologies6030063 - 6 Jul 2018
Cited by 8 | Viewed by 5908
Abstract
There is an interest in sensors for the detection of odorant molecules in the gaseous phase, especially those related to the fragrance of fruits, because odorant sensing is useful for on-site quality control of agricultural products. Previously, gas-chromatographic methods requiring bench-top devices were [...] Read more.
There is an interest in sensors for the detection of odorant molecules in the gaseous phase, especially those related to the fragrance of fruits, because odorant sensing is useful for on-site quality control of agricultural products. Previously, gas-chromatographic methods requiring bench-top devices were used for odorant-molecule detection. Herein, we report an odorant sensor based on cyclodextrins (CDs) as a stable odorant receptor, using a highly mass-sensitive and quantitative 27-MHz quartz crystal microbalance (QCM) device, which has the advantage of possible incorporation into portable devices. When ethyl butyrate (a model odorant molecule for fruit fragrances) was flowed onto a QCM plate modified with α-, β-, or γ-CD network films, a decrease in frequency was observed (corresponding to an increase in mass), owing to the capture of odorant molecules by CD molecules. The CD films were capable of capturing and releasing odorant molecules, depending on the type of CD (α-, β-, or γ-CD). Thus, these sensors are reusable for odorant-molecule sensing, and are applicable to pattern recognition of odorant molecules. Thus, sensors based on CD films combined with a QCM handheld device could be applied to monitoring the condition of fruits. Full article
(This article belongs to the Special Issue Smart Systems)
Show Figures

Graphical abstract

15 pages, 1220 KB  
Article
An Effective Quality Control of Pharmacologically Active Volatiles of Houttuynia cordata Thunb by Fast Gas Chromatography-Surface Acoustic Wave Sensor
by Se Yeon Oh
Molecules 2015, 20(6), 10298-10312; https://doi.org/10.3390/molecules200610298 - 3 Jun 2015
Cited by 20 | Viewed by 7394
Abstract
Fast gas chromatography-surface acoustic wave sensor (GC/SAW) has been applied for the detection of the pharmacological volatiles emanated from Houttuynia cordata Thunb which is from South Korea. H. cordata Thunb with unpleasant and fishy odors shows a variety of pharmacological activities such as [...] Read more.
Fast gas chromatography-surface acoustic wave sensor (GC/SAW) has been applied for the detection of the pharmacological volatiles emanated from Houttuynia cordata Thunb which is from South Korea. H. cordata Thunb with unpleasant and fishy odors shows a variety of pharmacological activities such as anti-microbial, anti-inflammatory, anti-cancer, and insect repellent. The aim of this study is to show a novel quality control by GC/SAW methodology for the discrimination of the three different parts of the plant such as leaves, aerial stems, and underground stems for H. cordata Thunb. Sixteen compounds were identified. β-Myrcene, cis-ocimene and decanal are the dominant volatiles for leaves (71.0%) and aerial stems (50.1%). While, monoterpenes (74.6%) are the dominant volatiles for underground stems. 2-Undecanone (1.3%) and lauraldehyde (3.5%) were found to be the characteristic components for leaves. Each part of the plant has its own characteristic fragrance pattern owing to its individual chemical compositions. Moreover, its individual characteristic fragrance patterns are conducive to discrimination of the three different parts of the plant. Consequently, fast GC/SAW can be a useful analytical method for quality control of the different parts of the plant with pharmacological volatiles as it provides second unit analysis, a simple and fragrant pattern recognition. Full article
(This article belongs to the Collection Recent Advances in Flavors and Fragrances)
Show Figures

Figure 1

20 pages, 3427 KB  
Article
Classifying Sources Influencing Indoor Air Quality (IAQ) Using Artificial Neural Network (ANN)
by Shaharil Mad Saad, Allan Melvin Andrew, Ali Yeon Md Shakaff, Abdul Rahman Mohd Saad, Azman Muhamad Yusof @ Kamarudin and Ammar Zakaria
Sensors 2015, 15(5), 11665-11684; https://doi.org/10.3390/s150511665 - 20 May 2015
Cited by 65 | Viewed by 12412
Abstract
Monitoring indoor air quality (IAQ) is deemed important nowadays. A sophisticated IAQ monitoring system which could classify the source influencing the IAQ is definitely going to be very helpful to the users. Therefore, in this paper, an IAQ monitoring system has been proposed [...] Read more.
Monitoring indoor air quality (IAQ) is deemed important nowadays. A sophisticated IAQ monitoring system which could classify the source influencing the IAQ is definitely going to be very helpful to the users. Therefore, in this paper, an IAQ monitoring system has been proposed with a newly added feature which enables the system to identify the sources influencing the level of IAQ. In order to achieve this, the data collected has been trained with artificial neural network or ANN—a proven method for pattern recognition. Basically, the proposed system consists of sensor module cloud (SMC), base station and service-oriented client. The SMC contain collections of sensor modules that measure the air quality data and transmit the captured data to base station through wireless network. The IAQ monitoring system is also equipped with IAQ Index and thermal comfort index which could tell the users about the room’s conditions. The results showed that the system is able to measure the level of air quality and successfully classify the sources influencing IAQ in various environments like ambient air, chemical presence, fragrance presence, foods and beverages and human activity. Full article
(This article belongs to the Section Sensor Networks)
Show Figures

Figure 1

Back to TopTop