Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (1)

Search Parameters:
Keywords = fractocohesive length

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 9649 KB  
Article
Mechanical Properties of a Supramolecular Nanocomposite Hydrogel Containing Hydroxyl Groups Enriched Hyper-Branched Polymers
by Wenjin Xing, Amin Jamshidi Ghahfarokhi, Chaoming Xie, Sanaz Naghibi, Jonathan A. Campbell and Youhong Tang
Polymers 2021, 13(5), 805; https://doi.org/10.3390/polym13050805 - 6 Mar 2021
Cited by 14 | Viewed by 5702
Abstract
Owing to highly tunable topology and functional groups, hyper-branched polymers are a potential candidate for toughening agents, for achieving supramolecular interactions with hydrogel networks. However, their toughening effects and mechanisms are not well understood. Here, by means of tensile and pure shear testings, [...] Read more.
Owing to highly tunable topology and functional groups, hyper-branched polymers are a potential candidate for toughening agents, for achieving supramolecular interactions with hydrogel networks. However, their toughening effects and mechanisms are not well understood. Here, by means of tensile and pure shear testings, we characterise the mechanics of a nanoparticle–hydrogel hybrid system that incorporates a hyper-branched polymer (HBP) with abundant hydroxyl end groups into the matrix of the polyacrylic acid (PAA) hydrogel. We found that the third and fourth generations of HBP are more effective than the second one in terms of strengthening and toughening effects. At a HBP content of 14 wt%, compared to that of the pure PAA hydrogel, strengths of the hybrid hydrogels with the third and fourth HBPs are 2.3 and 2.5 times; toughnesses are increased by 525% and 820%. However, for the second generation, strength is little improved, and toughness is increased by 225%. It was found that the stiffness of the hybrid hydrogel is almost unchanged relative to that of the PAA hydrogel, evidencing the weak characteristic of hydrogen bonds in this system. In addition, an outstanding self-healing feature was observed, confirming the fast reforming nature of broken hydrogen bonds. For the hybrid hydrogel, the critical size of failure zone around the crack tip, where serious viscous dissipation occurs, is related to a fractocohesive length, being about 0.62 mm, one order of magnitude less than that of other tough double-network hydrogels. This study can promote the application of hyper-branched polymers in the rapid evolving field of hydrogels for improved performance. Full article
(This article belongs to the Section Polymer Chemistry)
Show Figures

Graphical abstract

Back to TopTop