Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (21)

Search Parameters:
Keywords = fractal–fractional differentiation and integration

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 342 KiB  
Article
Double Local Fractional Yang–Laplace Transform for Local Fractional PDEs on Fractal Domains
by Djelloul Ziane, Mountassir Hamdi Cherif, Carlo Cattani and Abdelhamid Mohammed Djaouti
Fractal Fract. 2025, 9(7), 434; https://doi.org/10.3390/fractalfract9070434 - 1 Jul 2025
Viewed by 288
Abstract
This study introduces a novel analytical technique known as the double local fractional Yang–Laplace transform method (LFLζ2) and rigorously investigates its foundational properties, including linearity, differentiation, and convolution. The proposed method is formulated via double local fractional [...] Read more.
This study introduces a novel analytical technique known as the double local fractional Yang–Laplace transform method (LFLζ2) and rigorously investigates its foundational properties, including linearity, differentiation, and convolution. The proposed method is formulated via double local fractional integrals, enabling a robust mechanism for addressing local fractional partial differential equations defined on fractal domains, particularly Cantor sets. Through a series of illustrative examples, we demonstrate the applicability and efficacy of the LFLζ2 transform in solving complex local fractional partial differential equation models. Special emphasis is placed on the local fractional Laplace equation, the linear local fractional Klein–Gordon equation, and other models, wherein the method reveals significant computational and analytical advantages. The results substantiate the method’s potential as a powerful tool for broader classes of problems governed by local fractional dynamics on fractal geometries. Full article
22 pages, 6277 KiB  
Article
AI-Based Deep Learning of the Water Cycle System and Its Effects on Climate Change
by Hasib Khan, Wafa F. Alfwzan, Rabia Latif, Jehad Alzabut and Rajermani Thinakaran
Fractal Fract. 2025, 9(6), 361; https://doi.org/10.3390/fractalfract9060361 - 30 May 2025
Viewed by 543
Abstract
This study combines artificial intelligence (AI) with mathematical modeling to improve the forecasting of the water cycle mechanism. The proposed model simulates the development of global temperature, precipitation, and water availability, integrating key climate parameters that control these dynamics. Using a system of [...] Read more.
This study combines artificial intelligence (AI) with mathematical modeling to improve the forecasting of the water cycle mechanism. The proposed model simulates the development of global temperature, precipitation, and water availability, integrating key climate parameters that control these dynamics. Using a system of fractional-order differential equations in the fractal–fractional sense of derivatives, the model captures interactions between solar radiation, the greenhouse effect, evaporation, and runoff. The deep learning framework is trained on extensive climate datasets, allowing it to refine predictions and identify complex patterns within the water cycle. By applying AI techniques alongside mathematical modeling, this procedure provides valuable insights into climate change and water resource administration. The model’s predictions can contribute to assessing future climate states, optimizing environmental policies, and designing sustainable water management strategies. Furthermore, the hybrid methodology improves decision-making by offering data-driven solutions for climate adaptation. The findings illustrate the effectiveness of AI-driven models in addressing global climate challenges with improved precision. Full article
(This article belongs to the Special Issue Fractional-Order Dynamics and Control in Green Energy Systems)
Show Figures

Figure 1

29 pages, 841 KiB  
Article
Fuzzy Amplitudes and Kernels in Fractional Brownian Motion: Theoretical Foundations
by Georgy Urumov, Panagiotis Chountas and Thierry Chaussalet
Symmetry 2025, 17(4), 550; https://doi.org/10.3390/sym17040550 - 3 Apr 2025
Viewed by 371
Abstract
In this study, we present a novel mathematical framework for pricing financial derivates and modelling asset behaviour by bringing together fractional Brownian motion (fBm), fuzzy logic, and jump processes, all aligned with no-arbitrage principle. In particular, our mathematical developments include fBm defined through [...] Read more.
In this study, we present a novel mathematical framework for pricing financial derivates and modelling asset behaviour by bringing together fractional Brownian motion (fBm), fuzzy logic, and jump processes, all aligned with no-arbitrage principle. In particular, our mathematical developments include fBm defined through Mandelbrot-Van Ness kernels, and advanced mathematical tools such Molchan martingale and BDG inequalities ensuring rigorous theoretical validity. We bring together these different concepts to model uncertainties like sudden market shocks and investor sentiment, providing a fresh perspective in financial mathematics and derivatives pricing. By using fuzzy logic, we incorporate subject factors such as market optimism or pessimism, adjusting volatility dynamically according to the current market environment. Fractal mathematics with the Hurst exponent close to zero reflecting rough market conditions and fuzzy set theory are combined with jumps, representing sudden market changes to capture more realistic asset price movements. We also bridge the gap between complex stochastic equations and solvable differential equations using tools like Feynman-Kac approach and Girsanov transformation. We present simulations illustrating plausible scenarios ranging from pessimistic to optimistic to demonstrate how this model can behave in practice, highlighting potential advantages over classical models like the Merton jump diffusion and Black-Scholes. Overall, our proposed model represents an advancement in mathematical finance by integrating fractional stochastic processes with fuzzy set theory, thus revealing new perspectives on derivative pricing and risk-free valuation in uncertain environments. Full article
(This article belongs to the Section Mathematics)
Show Figures

Figure 1

20 pages, 311 KiB  
Article
On Ulam–Hyers–Mittag-Leffler Stability of Fractional Integral Equations Containing Multiple Variable Delays
by Osman Tunç and Cemil Tunç
Mathematics 2025, 13(4), 606; https://doi.org/10.3390/math13040606 - 12 Feb 2025
Cited by 1 | Viewed by 642
Abstract
In recent decades, many researchers have pointed out that derivatives and integrals of the non-integer order are well suited for describing various real-world materials, for example, polymers. It has also been shown that fractional-order mathematical models are more effective than integer-order mathematical models. [...] Read more.
In recent decades, many researchers have pointed out that derivatives and integrals of the non-integer order are well suited for describing various real-world materials, for example, polymers. It has also been shown that fractional-order mathematical models are more effective than integer-order mathematical models. Thereby, given these considerations, the investigation of qualitative properties, in particular, Ulam-type stabilities of fractional differential equations, fractional integral equations, etc., has now become a highly attractive subject for mathematicians, as this represents an important field of study due to their extensive applications in various branches of aerodynamics, biology, chemistry, the electrodynamics of complex media, polymer science, physics, rheology, and so on. Meanwhile, the qualitative concepts called Ulam–Hyers–Mittag-Leffler (U-H-M-L) stability and Ulam–Hyers–Mittag-Leffler–Rassias (U-H-M-L-R) stability are well-suited for describing the characteristics of fractional Ulam-type stabilities. The Banach contraction principle is a fundamental tool in nonlinear analysis, with numerous applications in operational equations, fractal theory, optimization theory, and various other fields. In this study, we consider a nonlinear fractional Volterra integral equation (FrVIE). The nonlinear terms in the FrVIE contain multiple variable delays. We prove the U-H-M-L stability and U-H-M-L-R stability of the FrVIE on a finite interval. Throughout this article, new sufficient conditions are obtained via six new results with regard to the U-H-M-L stability or the U-H-M-L-R stability of the FrVIE. The proofs depend on Banach’s fixed-point theorem, as well as the Chebyshev and Bielecki norms. In the particular case of the FrVIE, an example is delivered to illustrate U-H-M-L stability. Full article
(This article belongs to the Special Issue Advances in Mathematics: Equations, Algebra, and Discrete Mathematics)
21 pages, 2357 KiB  
Article
On the Martínez–Kaabar Fractal–Fractional Reduced Pukhov Differential Transformation and Its Applications
by Francisco Martínez and Mohammed K. A. Kaabar
Mathematics 2025, 13(3), 352; https://doi.org/10.3390/math13030352 - 22 Jan 2025
Viewed by 976
Abstract
This paper addresses the extension of the Martinez–Kaabar fractal–fractional calculus (simply expressed as MK calculus) to the context of reduced differential transformation, with applications to the solution of some partial differential equations. Since this differential transformation is derived from the Taylor series expansion [...] Read more.
This paper addresses the extension of the Martinez–Kaabar fractal–fractional calculus (simply expressed as MK calculus) to the context of reduced differential transformation, with applications to the solution of some partial differential equations. Since this differential transformation is derived from the Taylor series expansion of real-valued functions of several variables, it is necessary to develop this theory in the context of such functions. Firstly, classical elements of the analysis of functions of several real variables are introduced, such as the concept of partial derivative and Clairaut’s theorem, in terms of the MK partial α,γ-derivative. Next, we establish the fractal–fractional (FrFr) Taylor formula with Lagrange residue and discuss a sufficient condition for a function of class Cα,γ on an open and bounded set DR2 to be expanded into a convergent infinite series, the so-called FrFr Taylor series. The theoretical study is completed by defining the FrFr reduced differential transformation and establishing its fundamental properties, which will allow the construction of the FrFr reduced Pukhov differential transformation method (FrFrRPDTM). Based on the previous results, this new technique is applied to solve interesting non-integer order linear and non-linear partial differential equations that incorporate the fractal effect. Finally, the results show that the FrFrRPDTM represents a simple instrument that provides a direct, efficient, and effective solution to problems involving this class of partial differential equations. Full article
(This article belongs to the Special Issue Mathematical Inequalities and Fractional Calculus)
Show Figures

Figure 1

21 pages, 342 KiB  
Article
Martínez–Kaabar Fractal–Fractional Laplace Transformation with Applications to Integral Equations
by Francisco Martínez and Mohammed K. A. Kaabar
Symmetry 2024, 16(11), 1483; https://doi.org/10.3390/sym16111483 - 6 Nov 2024
Cited by 1 | Viewed by 825
Abstract
This paper addresses the extension of Martinez–Kaabar (MK) fractal–fractional calculus (for simplicity, in this research work, it is referred to as MK calculus) to the field of integral transformations, with applications to some solutions to integral equations. A new notion of Laplace transformation, [...] Read more.
This paper addresses the extension of Martinez–Kaabar (MK) fractal–fractional calculus (for simplicity, in this research work, it is referred to as MK calculus) to the field of integral transformations, with applications to some solutions to integral equations. A new notion of Laplace transformation, named MK Laplace transformation, is proposed, which incorporates the MK α,γ-integral operator into classical Laplace transformation. Laplace transformation is very applicable in mathematical physics problems, especially symmetrical problems in physics, which are frequently seen in quantum mechanics. Symmetrical systems and properties can be helpful in applications of Laplace transformations, which can help in providing an effective computational tool for solving such problems. The main properties and results of this transformation are discussed. In addition, the MK Laplace transformation method is constructed and applied to the non-integer-order first- and second-kind Volterra integral equations, which exhibit a fractal effect. Finally, the MK Abel integral equation’s solution is also investigated via this technique. Full article
(This article belongs to the Section Mathematics)
17 pages, 3205 KiB  
Article
On Martínez–Kaabar Fractal–Fractional Volterra Integral Equations of the Second Kind
by Francisco Martínez and Mohammed K. A. Kaabar
Fractal Fract. 2024, 8(8), 466; https://doi.org/10.3390/fractalfract8080466 - 7 Aug 2024
Cited by 3 | Viewed by 1320
Abstract
The extension of the theory of generalized fractal–fractional calculus, named in this article as Martínez–Kaabar Fractal–Fractional (MKFF) calculus, is addressed to the field of integral equations. Based on the classic Adomian decomposition method, by incorporating the MKFF α,γ-integral operator, we [...] Read more.
The extension of the theory of generalized fractal–fractional calculus, named in this article as Martínez–Kaabar Fractal–Fractional (MKFF) calculus, is addressed to the field of integral equations. Based on the classic Adomian decomposition method, by incorporating the MKFF α,γ-integral operator, we establish the so-called extended Adomian decomposition method (EADM). The convergence of this proposed technique is also discussed. Finally, some interesting Volterra Integral equations of non-integer order which possess a fractal effect are solved via our proposed approach. The results in this work provide a novel approach that can be employed in solving various problems in science and engineering, which can overcome the challenges of solving various equations, formulated via other classical fractional operators. Full article
Show Figures

Figure 1

22 pages, 3564 KiB  
Article
An Efficient Numerical Scheme for a Time-Fractional Black–Scholes Partial Differential Equation Derived from the Fractal Market Hypothesis
by Samuel M. Nuugulu, Frednard Gideon and Kailash C. Patidar
Fractal Fract. 2024, 8(8), 461; https://doi.org/10.3390/fractalfract8080461 - 6 Aug 2024
Cited by 2 | Viewed by 1233
Abstract
Since the early 1970s, the study of Black–Scholes (BS) partial differential equations (PDEs) under the Efficient Market Hypothesis (EMH) has been a subject of active research in financial engineering. It has now become obvious, even to casual observers, that the classical BS models [...] Read more.
Since the early 1970s, the study of Black–Scholes (BS) partial differential equations (PDEs) under the Efficient Market Hypothesis (EMH) has been a subject of active research in financial engineering. It has now become obvious, even to casual observers, that the classical BS models derived under the EMH framework fail to account for a number of realistic price evolutions in real-time market data. An alternative approach to the EMH framework is the Fractal Market Hypothesis (FMH), which proposes better and clearer explanations of market behaviours during unfavourable market conditions. The FMH involves non-local derivatives and integral operators, as well as fractional stochastic processes, which provide better tools for explaining the dynamics of evolving market anomalies, something that classical BS models may fail to explain. In this work, using the FMH, we derive a time-fractional Black–Scholes partial differential equation (tfBS-PDE) and then transform it into a heat equation, which allows for ease of implementing a high-order numerical scheme for solving it. Furthermore, the stability and convergence properties of the numerical scheme are discussed, and overall techniques are applied to pricing European put option problems. Full article
(This article belongs to the Section Numerical and Computational Methods)
Show Figures

Figure 1

13 pages, 2069 KiB  
Article
Analysis of a Normalized Structure of a Complex Fractal–Fractional Integral Transform Using Special Functions
by Rabha W. Ibrahim, Soheil Salahshour and Ágnes Orsolya Páll-Szabó
Axioms 2024, 13(8), 522; https://doi.org/10.3390/axioms13080522 - 2 Aug 2024
Cited by 1 | Viewed by 808
Abstract
By using the most generalized gamma function (parametric gamma function, or p-gamma function), we present the most generalized Rabotnov function, called the p-Rabotnov function. Consequently, new fractal–fractional differential and integral operators of a complex variable in an open unit disk are [...] Read more.
By using the most generalized gamma function (parametric gamma function, or p-gamma function), we present the most generalized Rabotnov function, called the p-Rabotnov function. Consequently, new fractal–fractional differential and integral operators of a complex variable in an open unit disk are defined and investigated analytically and geometrically. We address some inequalities involving the generalized fractal–fractional integral operator in some spaces of analytic functions. A novel complex fractal–fractional integral transform (CFFIT) is presented. A normalization of the proposed CFFIT is observed in the open unit disk. Examples are illustrated for power series of analytic functions. Full article
(This article belongs to the Special Issue Advances in Geometric Function Theory and Related Topics)
Show Figures

Figure 1

18 pages, 892 KiB  
Article
A Hybrid Approach Combining the Lie Method and Long Short-Term Memory (LSTM) Network for Predicting the Bitcoin Return
by Melike Bildirici, Yasemen Ucan and Ramazan Tekercioglu
Fractal Fract. 2024, 8(7), 413; https://doi.org/10.3390/fractalfract8070413 - 15 Jul 2024
Cited by 3 | Viewed by 1763
Abstract
This paper introduces hybrid models designed to analyze daily and weekly bitcoin return spanning the periods from 18 July 2010 to 28 December 2023 for daily data, and from 18 July 2010 to 24 December 2023 for weekly data. Firstly, the fractal and [...] Read more.
This paper introduces hybrid models designed to analyze daily and weekly bitcoin return spanning the periods from 18 July 2010 to 28 December 2023 for daily data, and from 18 July 2010 to 24 December 2023 for weekly data. Firstly, the fractal and chaotic structure of the selected variables was explored. Asymmetric Cantor set, Boundary of the Dragon curve, Julia set z2 −1, Boundary of the Lévy C curve, von Koch curve, and Brownian function (Wiener process) tests were applied. The R/S and Mandelbrot–Wallis tests confirmed long-term dependence and fractionality. The largest Lyapunov test, the Rosenstein, Collins and DeLuca, and Kantz methods of Lyapunov exponents, and the HCT and Shannon entropy tests tracked by the Kolmogorov–Sinai (KS) complexity test determined the evidence of chaos, entropy, and complexity. The BDS test of independence test approved nonlinearity, and the TeraesvirtaNW and WhiteNW tests, the Tsay test for nonlinearity, the LR test for threshold nonlinearity, and White’s test and Engle test confirmed nonlinearity and heteroskedasticity, in addition to fractionality and chaos. In the second stage, the standard ARFIMA method was applied, and its results were compared to the LieNLS and LieOLS methods. The results showed that, under conditions of chaos, entropy, and complexity, the ARFIMA method did not yield successful results. Both baseline models, LieNLS and LieOLS, are enhanced by integrating them with deep learning methods. The models, LieLSTMOLS and LieLSTMNLS, leverage manifold-based approaches, opting for matrix representations over traditional differential operator representations of Lie algebras were employed. The parameters and coefficients obtained from LieNLS and LieOLS, and the LieLSTMOLS and LieLSTMNLS methods were compared. And the forecasting capabilities of these hybrid models, particularly LieLSTMOLS and LieLSTMNLS, were compared with those of the main models. The in-sample and out-of-sample analyses demonstrated that the LieLSTMOLS and LieLSTMNLS methods outperform the others in terms of MAE and RMSE, thereby offering a more reliable means of assessing the selected data. Our study underscores the importance of employing the LieLSTM method for analyzing the dynamics of bitcoin. Our findings have significant implications for investors, traders, and policymakers. Full article
(This article belongs to the Special Issue Fractional-Order Dynamics and Control in Green Energy Systems)
Show Figures

Figure 1

15 pages, 313 KiB  
Article
A New Generalized Definition of Fractal–Fractional Derivative with Some Applications
by Francisco Martínez and Mohammed K. A. Kaabar
Math. Comput. Appl. 2024, 29(3), 31; https://doi.org/10.3390/mca29030031 - 25 Apr 2024
Cited by 5 | Viewed by 1961
Abstract
In this study, a new generalized fractal–fractional (FF) derivative is proposed. By applying this definition to some elementary functions, we show its compatibility with the results of the FF derivative in the Caputo sense with the power law. The main elements of classical [...] Read more.
In this study, a new generalized fractal–fractional (FF) derivative is proposed. By applying this definition to some elementary functions, we show its compatibility with the results of the FF derivative in the Caputo sense with the power law. The main elements of classical differential calculus are introduced in terms of this new derivative. Thus, we establish and demonstrate the basic operations with derivatives, chain rule, mean value theorems with their immediate applications and inverse function’s derivative. We complete the theory of generalized FF calculus by proposing a notion of integration and presenting two important results of integral calculus: the fundamental theorem and Barrow’s rule. Finally, we analytically solve interesting FF ordinary differential equations by applying our proposed definition. Full article
41 pages, 619 KiB  
Article
Local Fuzzy Fractional Partial Differential Equations in the Realm of Fractal Calculus with Local Fractional Derivatives
by Mawia Osman, Muhammad Marwan, Syed Omar Shah, Lamia Loudahi, Mahvish Samar, Ebrima Bittaye and Altyeb Mohammed Mustafa
Fractal Fract. 2023, 7(12), 851; https://doi.org/10.3390/fractalfract7120851 - 29 Nov 2023
Cited by 2 | Viewed by 1662
Abstract
In this study, local fuzzy fractional partial differential equations (LFFPDEs) are considered using a hybrid local fuzzy fractional approach. Fractal model behavior can be represented using fuzzy partial differential equations (PDEs) with local fractional derivatives. The current methods are hybrids of the local [...] Read more.
In this study, local fuzzy fractional partial differential equations (LFFPDEs) are considered using a hybrid local fuzzy fractional approach. Fractal model behavior can be represented using fuzzy partial differential equations (PDEs) with local fractional derivatives. The current methods are hybrids of the local fuzzy fractional integral transform and the local fuzzy fractional homotopy perturbation method (LFFHPM), the local fuzzy fractional Sumudu decomposition method (LFFSDM) in the sense of local fuzzy fractional derivatives, and the local fuzzy fractional Sumudu variational iteration method (LFFSVIM); these are applied when solving LFFPDEs. The working procedure shows how effective solutions for specific LFFPDEs can be obtained using the applied approaches. Moreover, we present a comparison of the local fuzzy fractional Laplace variational iteration method (LFFLIM), the local fuzzy fractional series expansion method (LFFSEM), the local fuzzy fractional variation iteration method (LFFVIM), and the local fuzzy fractional Adomian decomposition method (LFFADM), which are applied to obtain fuzzy fractional diffusion and wave equations on Cantor sets. To demonstrate the effectiveness of the used techniques, some examples are given. The results demonstrate the major advantages of the approaches, which are equally efficient and simple to use in order to solve fuzzy differential equations with local fractional derivatives. Full article
Show Figures

Figure 1

16 pages, 1764 KiB  
Article
A New Class of Generalized Fractal and Fractal-Fractional Derivatives with Non-Singular Kernels
by Khalid Hattaf
Fractal Fract. 2023, 7(5), 395; https://doi.org/10.3390/fractalfract7050395 - 12 May 2023
Cited by 69 | Viewed by 5527
Abstract
The present paper introduces a new class of generalized differential and integral operators. This class includes and generalizes a large number of definitions of fractal-fractional derivatives and integral operators used to model the complex dynamics of many natural and physical phenomena found in [...] Read more.
The present paper introduces a new class of generalized differential and integral operators. This class includes and generalizes a large number of definitions of fractal-fractional derivatives and integral operators used to model the complex dynamics of many natural and physical phenomena found in diverse fields of science and engineering. Some properties of the newly introduced class are rigorously established. As applications of this new class, two illustrative examples are presented, one for a simple problem and the other for a nonlinear problem modeling the dynamical behavior of a chaotic system. Full article
(This article belongs to the Special Issue Operators of Fractional Integration and Their Applications)
Show Figures

Figure 1

11 pages, 686 KiB  
Article
Mathematical Model of Heat Conduction for a Semi-Infinite Body, Taking into Account Memory Effects and Spatial Correlations
by Vetlugin D. Beybalaev, Abutrab A. Aliverdiev, Amuchi Z. Yakubov, Said A. Ninalalov and Anise A. Amirova
Fractal Fract. 2023, 7(3), 265; https://doi.org/10.3390/fractalfract7030265 - 16 Mar 2023
Cited by 3 | Viewed by 1745
Abstract
One of the promising approaches to the description of many physical processes is the use of the fractional derivative mathematical apparatus. Fractional dimensions very often arise when modeling various processes in fractal (multi-scale and self-similar) environments. In a fractal medium, in contrast to [...] Read more.
One of the promising approaches to the description of many physical processes is the use of the fractional derivative mathematical apparatus. Fractional dimensions very often arise when modeling various processes in fractal (multi-scale and self-similar) environments. In a fractal medium, in contrast to an ordinary continuous medium, a randomly wandering particle moves away from the reference point more slowly since not all directions of motion become available to it. The slowdown of the diffusion process in fractal media is so significant that physical quantities begin to change more slowly than in ordinary media.This effect can only be taken into account with the help of integral and differential equations containing a fractional derivative with respect to time. Here, the problem of heat and mass transfer in media with a fractal structure was posed and analytically solved when a heat flux was specified on one of the boundaries. The second initial boundary value problem for the heat equation with a fractional Caputo derivative with respect to time and the Riesz derivative with respect to the spatial variable was studied. A theorem on the semigroup property of the fractional Riesz derivative was proved. To find a solution, the problem was reduced to a boundary value problem with boundary conditions of the first kind. The solution to the problem was found by applying the Fourier transform in the spatial variable and the Laplace transform in time. A computational experiment was carried out to analyze the obtained solutions. Graphs of the temperature distribution dependent on the coordinate and time were constructed. Full article
Show Figures

Figure 1

20 pages, 421 KiB  
Article
Application of Fixed Points in Bipolar Controlled Metric Space to Solve Fractional Differential Equation
by Gunaseelan Mani, Rajagopalan Ramaswamy, Arul Joseph Gnanaprakasam, Amr Elsonbaty, Ola A. Ashour Abdelnaby and Stojan Radenović
Fractal Fract. 2023, 7(3), 242; https://doi.org/10.3390/fractalfract7030242 - 8 Mar 2023
Cited by 14 | Viewed by 1959
Abstract
Fixed point results and metric fixed point theory play a vital role to find the unique solution to differential and integral equations. Likewise, fractal calculus has vast physical applications. In this article, we introduce the concept of bipolar-controlled metric space and prove fixed [...] Read more.
Fixed point results and metric fixed point theory play a vital role to find the unique solution to differential and integral equations. Likewise, fractal calculus has vast physical applications. In this article, we introduce the concept of bipolar-controlled metric space and prove fixed point theorems. The derived results expand and extend certain well-known results from the research literature and are supported with a non-trivial example. We have applied the fixed point result to find the analytical solution to the integral equation and fractional differential equation. The analytical solution has been supplemented with numerical simulation. Full article
Show Figures

Figure 1

Back to TopTop