Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (5)

Search Parameters:
Keywords = fougerite

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
32 pages, 15555 KiB  
Article
Nanometric and Hydrophobic Green Rust Minerals upon Exposure to Amino Acids and Nickel as Prerequisites for a Primitive Chemiosmosis
by Nil Gaudu, Chloé Truong, Orion Farr, Adriana Clouet, Olivier Grauby, Daniel Ferry, Philippe Parent, Carine Laffon, Georges Ona-Nguema, François Guyot, Wolfgang Nitschke and Simon Duval
Life 2025, 15(4), 671; https://doi.org/10.3390/life15040671 - 19 Apr 2025
Viewed by 608
Abstract
Geological structures known as alkaline hydrothermal vents (AHVs) likely displayed dynamic energy characteristics analogous to cellular chemiosmosis and contained iron-oxyhydroxide green rusts in the early Earth. Under specific conditions, those minerals could have acted as non-enzymatic catalysts in the development of early bioenergetic [...] Read more.
Geological structures known as alkaline hydrothermal vents (AHVs) likely displayed dynamic energy characteristics analogous to cellular chemiosmosis and contained iron-oxyhydroxide green rusts in the early Earth. Under specific conditions, those minerals could have acted as non-enzymatic catalysts in the development of early bioenergetic chemiosmotic energy systems while being integrated into the membrane of AHV-produced organic vesicles. Here, we show that the simultaneous addition of two probable AHV components, namely nickel and amino acids, impacts green rust’s physico-chemical properties, especially those required for its incorporation in lipid vesicle’s membranes, such as decreasing the mineral size to the nanometer scale and increasing its hydrophobicity. These results suggest that such hydrophobic nano green rusts could fit into lipid vesicle membranes and could have functioned as a primitive, inorganic precursor to modern chemiosmotic metalloenzymes, facilitating both electron and proton transport in early life-like systems. Full article
(This article belongs to the Special Issue 2nd Edition—Featured Papers on the Origins of Life)
Show Figures

Figure 1

28 pages, 3121 KiB  
Review
The “Water Problem”(sic), the Illusory Pond and Life’s Submarine Emergence—A Review
by Michael J. Russell
Life 2021, 11(5), 429; https://doi.org/10.3390/life11050429 - 10 May 2021
Cited by 29 | Viewed by 9765
Abstract
The assumption that there was a “water problem” at the emergence of life—that the Hadean Ocean was simply too wet and salty for life to have emerged in it—is here subjected to geological and experimental reality checks. The “warm little pond” that would [...] Read more.
The assumption that there was a “water problem” at the emergence of life—that the Hadean Ocean was simply too wet and salty for life to have emerged in it—is here subjected to geological and experimental reality checks. The “warm little pond” that would take the place of the submarine alkaline vent theory (AVT), as recently extolled in the journal Nature, flies in the face of decades of geological, microbiological and evolutionary research and reasoning. To the present author, the evidence refuting the warm little pond scheme is overwhelming given the facts that (i) the early Earth was a water world, (ii) its all-enveloping ocean was never less than 4 km deep, (iii) there were no figurative “Icelands” or “Hawaiis”, nor even an “Ontong Java” then because (iv) the solidifying magma ocean beneath was still too mushy to support such salient loadings on the oceanic crust. In place of the supposed warm little pond, we offer a well-protected mineral mound precipitated at a submarine alkaline vent as life’s womb: in place of lipid membranes, we suggest peptides; we replace poisonous cyanide with ammonium and hydrazine; instead of deleterious radiation we have the appropriate life-giving redox and pH disequilibria; and in place of messy chemistry we offer the potential for life’s emergence from the simplest of geochemically available molecules and ions focused at a submarine alkaline vent in the Hadean—specifically within the nano-confined flexible and redox active interlayer walls of the mixed-valent double layer oxyhydroxide mineral, fougerite/green rust comprising much of that mound. Full article
(This article belongs to the Collection Feature Review Papers for Life)
Show Figures

Figure 1

24 pages, 3295 KiB  
Article
Six ‘Must-Have’ Minerals for Life’s Emergence: Olivine, Pyrrhotite, Bridgmanite, Serpentine, Fougerite and Mackinawite
by Michael J. Russell and Adrian Ponce
Life 2020, 10(11), 291; https://doi.org/10.3390/life10110291 - 19 Nov 2020
Cited by 30 | Viewed by 9765
Abstract
Life cannot emerge on a planet or moon without the appropriate electrochemical disequilibria and the minerals that mediate energy-dissipative processes. Here, it is argued that four minerals, olivine ([Mg>Fe]2SiO4), bridgmanite ([Mg,Fe]SiO3), serpentine ([Mg,Fe,]2-3Si2O [...] Read more.
Life cannot emerge on a planet or moon without the appropriate electrochemical disequilibria and the minerals that mediate energy-dissipative processes. Here, it is argued that four minerals, olivine ([Mg>Fe]2SiO4), bridgmanite ([Mg,Fe]SiO3), serpentine ([Mg,Fe,]2-3Si2O5[OH)]4), and pyrrhotite (Fe(1−x)S), are an essential requirement in planetary bodies to produce such disequilibria and, thereby, life. Yet only two minerals, fougerite ([Fe2+6xFe3+6(x−1)O12H2(7−3x)]2+·[(CO2−)·3H2O]2−) and mackinawite (Fe[Ni]S), are vital—comprising precipitate membranes—as initial “free energy” conductors and converters of such disequilibria, i.e., as the initiators of a CO2-reducing metabolism. The fact that wet and rocky bodies in the solar system much smaller than Earth or Venus do not reach the internal pressure (≥23 GPa) requirements in their mantles sufficient for producing bridgmanite and, therefore, are too reduced to stabilize and emit CO2—the staple of life—may explain the apparent absence or negligible concentrations of that gas on these bodies, and thereby serves as a constraint in the search for extraterrestrial life. The astrobiological challenge then is to search for worlds that (i) are large enough to generate internal pressures such as to produce bridgmanite or (ii) boast electron acceptors, including imported CO2, from extraterrestrial sources in their hydrospheres. Full article
(This article belongs to the Special Issue Frontiers of Astrobiology)
Show Figures

Graphical abstract

16 pages, 2029 KiB  
Article
Birnessite: A New Oxidant for Green Rust Formation
by Amira Doggaz, Romain Coustel, Pierrick Durand, François Humbert and Christian Ruby
Materials 2020, 13(17), 3777; https://doi.org/10.3390/ma13173777 - 26 Aug 2020
Cited by 4 | Viewed by 3151
Abstract
Iron and manganese are ubiquitous in the natural environment. FeII-FeIII layered double hydroxide, commonly called green rust (GR), and MnIII-MnIV birnessite (Bir) are also well known to be reactive solid compounds. Therefore, studying [...] Read more.
Iron and manganese are ubiquitous in the natural environment. FeII-FeIII layered double hydroxide, commonly called green rust (GR), and MnIII-MnIV birnessite (Bir) are also well known to be reactive solid compounds. Therefore, studying the chemical interactions between Fe and Mn species could contribute to understanding the interactions between their respective biogeochemical cycles. Moreover, ferromanganese solid compounds are potentially interesting materials for water treatment. Here, a {Fe(OH)2, FeIIaq} mixture was oxidized by Bir in sulphated aqueous media in the presence or absence of dissolved O2. In oxic conditions for an initial FeII/OH ratio of 0.6, a single GR phase was obtained in a first step; the oxidation kinetics being faster than without Bir. In a second step, GR was oxidised into various final products, mainly in a spinel structure. A partial substitution of Fe by Mn species was suspected in both GR and the spinel. In anoxic condition, GR was also observed but other by-products were concomitantly formed. All the oxidation products were characterized by XRD, XPS, and Mössbauer spectroscopy. Hence, oxidation of FeII species by Bir can be considered as a new chemical pathway for producing ferromanganese spinels. Furthermore, these results suggest that Bir may participate in the formation of GR minerals. Full article
(This article belongs to the Special Issue Layered Double Hydroxides (LDH) and LDH-Based Hybrid Composites)
Show Figures

Graphical abstract

13 pages, 1876 KiB  
Article
Quantitative Estimation of Fougerite Green Rust in Soils and Sediments by Citrate—Bicarbonate Kinetic Extractions
by Frédéric Feder, Fabienne Trolard, Guilhem Bourrié and Goestar Klingelhöfer
Soil Syst. 2018, 2(4), 54; https://doi.org/10.3390/soilsystems2040054 - 1 Oct 2018
Cited by 12 | Viewed by 3334
Abstract
Fougerite (IMA 203-057), from green rust (GR) group, is difficult to quantify due to its reactivity and its small concentration in soils and sediments. Chemical extractions with citrate-bicarbonate (CB) reagent, in kinetic mode, can be used for a pre-diagnosis. Performed by steps (0, [...] Read more.
Fougerite (IMA 203-057), from green rust (GR) group, is difficult to quantify due to its reactivity and its small concentration in soils and sediments. Chemical extractions with citrate-bicarbonate (CB) reagent, in kinetic mode, can be used for a pre-diagnosis. Performed by steps (0, 1, 6, 48, 168 and 504 h), the proposed protocol was applied on samples from Gleysol of Fougère’s forest with mineralogical controls by Mössbauer and XRD (X-ray diffraction) after each step of extraction. In less than 6 h, the first fraction extracted is composed of 70% Si, 80% Al, 23% Fe and 80% Mg of total element extractable by CB and is ascribed to the “indefinable mineral mixture Si-Al-Fe” named by Tamm. Between 6 and 168 h, the second fraction extracted is composed of Fe and Mg with a constant mole ratio Fe/Mg equal to 10 and is ascribed to the fougerite-GR phase. Analysis of XRD pattern and of Mössbauer spectra confirms: (i) all the other mineral phases containing Al, Mg, Si were not dissolved by CB after 6 h; (ii) the CB treatment extracts fougerite-GR completely. The residual fraction is composed of components not dissolved by CB extraction. Thus, the selectivity of CB can be used to quantitatively estimate the presence of fougerite-GRs in soils and sediments. Full article
Show Figures

Figure 1

Back to TopTop