Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = forecasting of CBM daily production

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 3050 KiB  
Article
A Multivariate Long Short-Term Memory Neural Network for Coalbed Methane Production Forecasting
by Xijie Xu, Xiaoping Rui, Yonglei Fan, Tian Yu and Yiwen Ju
Symmetry 2020, 12(12), 2045; https://doi.org/10.3390/sym12122045 - 10 Dec 2020
Cited by 9 | Viewed by 2881
Abstract
Owing to the importance of coalbed methane (CBM) as a source of energy, it is necessary to predict its future production. However, the production process of CBM is the result of the interaction of many factors, making it difficult to perform accurate simulations [...] Read more.
Owing to the importance of coalbed methane (CBM) as a source of energy, it is necessary to predict its future production. However, the production process of CBM is the result of the interaction of many factors, making it difficult to perform accurate simulations through mathematical models. We must therefore rely on the historical data of CBM production to understand its inherent features and predict its future performance. The objective of this paper is to establish a deep learning prediction method for coalbed methane production without considering complex geological factors. In this paper, we propose a multivariate long short-term memory neural network (M-LSTM NN) model to predict CBM production. We tested the performance of this model using the production data of CBM wells in the Panhe Demonstration Area in the Qinshui Basin of China. The production of different CBM wells has similar characteristics in time. We can use the symmetric similarity of the data to transfer the model to the production forecasting of different CBM wells. Our results demonstrate that the M-LSTM NN model, utilizing the historical yield data of CBM as well as other auxiliary information such as casing pressures, water production levels, and bottom hole temperatures (including the highest and lowest temperatures), can predict CBM production successfully while obtaining a mean absolute percentage error (MAPE) of 0.91%. This is an improvement when compared with the traditional LSTM NN model, which has an MAPE of 1.14%. In addition to this, we conducted multi-step predictions at a daily and monthly scale and obtained similar results. It should be noted that with an increase in time lag, the prediction performance became less accurate. At the daily level, the MAPE value increased from 0.24% to 2.09% over 10 successive days. The predictions on the monthly scale also saw an increase in the MAPE value from 2.68% to 5.95% over three months. This tendency suggests that long-term forecasts are more difficult than short-term ones, and more historical data are required to produce more accurate results. Full article
Show Figures

Figure 1

15 pages, 4115 KiB  
Article
Forecasting of Coalbed Methane Daily Production Based on T-LSTM Neural Networks
by Xijie Xu, Xiaoping Rui, Yonglei Fan, Tian Yu and Yiwen Ju
Symmetry 2020, 12(5), 861; https://doi.org/10.3390/sym12050861 - 23 May 2020
Cited by 23 | Viewed by 4465
Abstract
Accurately forecasting the daily production of coalbed methane (CBM) is important forformulating associated drainage parameters and evaluating the economic benefit of CBM mining. Daily production of CBM depends on many factors, making it difficult to predict using conventional mathematical models. Because traditional methods [...] Read more.
Accurately forecasting the daily production of coalbed methane (CBM) is important forformulating associated drainage parameters and evaluating the economic benefit of CBM mining. Daily production of CBM depends on many factors, making it difficult to predict using conventional mathematical models. Because traditional methods do not reflect the long-term time series characteristics of CBM production, this study first used a long short-term memory neural network (LSTM) and transfer learning (TL) method for time series forecasting of CBM daily production. Based on the LSTM model, we introduced the idea of transfer learning and proposed a Transfer-LSTM (T-LSTM) CBM production forecasting model. This approach first uses a large amount of data similar to the target to pretrain the weights of the LSTM network, then uses transfer learning to fine-tune LSTM network parameters a second time, so as to obtain the final T-LSTM model. Experiments were carried out using daily CBM production data for the Panhe Demonstration Zone at southern Qinshui basin in China. Based on the results, the idea of transfer learning can solve the problem of insufficient samples during LSTM training. Prediction results for wells that entered the stable period earlier were more accurate, whereas results for types with unstable production in the early stage require further exploration. Because CBM wells daily production data have symmetrical similarities, which can provide a reference for the prediction of other wells, so our proposed T-LSTM network can achieve good results for the production forecast and can provide guidance for forecasting production of CBM wells. Full article
Show Figures

Figure 1

Back to TopTop