Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = forêt Montmorency

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 11004 KiB  
Article
Advances in Snow Hydrology Using a Combined Approach of GNSS In Situ Stations, Hydrological Modelling and Earth Observation—A Case Study in Canada
by Florian Appel, Franziska Koch, Anja Rösel, Philipp Klug, Patrick Henkel, Markus Lamm, Wolfram Mauser and Heike Bach
Geosciences 2019, 9(1), 44; https://doi.org/10.3390/geosciences9010044 - 15 Jan 2019
Cited by 13 | Viewed by 8361
Abstract
The availability of in situ snow water equivalent (SWE), snowmelt and run-off measurements is still very limited especially in remote areas as the density of operational stations and field observations is often scarce and usually costly, labour-intense and/or risky. With remote sensing products, [...] Read more.
The availability of in situ snow water equivalent (SWE), snowmelt and run-off measurements is still very limited especially in remote areas as the density of operational stations and field observations is often scarce and usually costly, labour-intense and/or risky. With remote sensing products, spatially distributed information on snow is potentially available, but often lacks the required spatial or temporal requirements for hydrological applications. For the assurance of a high spatial and temporal resolution, however, it is often necessary to combine several methods like Earth Observation (EO), modelling and in situ approaches. Such a combination was targeted within the business applications demonstration project SnowSense (2015–2018), co-funded by the European Space Agency (ESA), where we designed, developed and demonstrated an operational snow hydrological service. During the run-time of the project, the entire service was demonstrated for the island of Newfoundland, Canada. The SnowSense service, developed during the demonstration project, is based on three pillars, including (i) newly developed in situ snow monitoring stations based on signals of the Global Navigation Satellite System (GNSS); (ii) EO snow cover products on the snow cover extent and on information whether the snow is dry or wet; and (iii) an integrated physically based hydrological model. The key element of the service is the novel GNSS based in situ sensor, using two static low-cost antennas with one being mounted on the ground and the other one above the snow cover. This sensor setup enables retrieving the snow parameters SWE and liquid water content (LWC) in the snowpack in parallel, using GNSS carrier phase measurements and signal strength information. With the combined approach of the SnowSense service, it is possible to provide spatially distributed SWE to assess run-off and to provide relevant information for hydropower plant management in a high spatial and temporal resolution. This is particularly needed for so far non, or only sparsely equipped catchments in remote areas. We present the results and validation of (i) the GNSS in situ sensor setup for SWE and LWC measurements at the well-equipped study site Forêt Montmorency near Quebec, Canada and (ii) the entire combined in situ, EO and modelling SnowSense service resulting in assimilated SWE maps and run-off information for two different large catchments in Newfoundland, Canada. Full article
(This article belongs to the Special Issue Remote Sensing of Snow and Its Applications)
Show Figures

Figure 1

9 pages, 2192 KiB  
Article
Estimating Wildlife Tag Location Errors from a VHF Receiver Mounted on a Drone
by André Desrochers, Junior A. Tremblay, Yves Aubry, Dominique Chabot, Paul Pace and David M. Bird
Drones 2018, 2(4), 44; https://doi.org/10.3390/drones2040044 - 11 Dec 2018
Cited by 17 | Viewed by 15784
Abstract
Recent studies have demonstrated the high potential of drones as tools to facilitate wildlife radio-tracking in rugged, difficult-to-access terrain. Without estimates of accuracy, however, data obtained from receivers attached to drones will be of limited use. We estimated transmitter location errors from a [...] Read more.
Recent studies have demonstrated the high potential of drones as tools to facilitate wildlife radio-tracking in rugged, difficult-to-access terrain. Without estimates of accuracy, however, data obtained from receivers attached to drones will be of limited use. We estimated transmitter location errors from a drone-borne VHF (very high frequency) receiver in a hilly and dense boreal forest in southern Québec, Canada. Transmitters and the drone-borne receiver were part of the Motus radio-tracking system, a collaborative network designed to study animal movements at local to continental scales. We placed five transmitters at fixed locations, 1–2 m above ground, and flew a quadrotor drone over them along linear segments, at distances to transmitters ranging from 20 m to 534 m. Signal strength was highest with transmitters with antennae pointing upwards, and lowest with transmitters with horizontal antennae. Based on drone positions with maximum signal strength, mean location error was 134 m (range 44–278 m, n = 17). Estimating peak signal strength against drone GPS coordinates with quadratic, least-squares regressions led to lower location error (mean = 94 m, range 15–275 m, n = 10) but with frequent loss of data due to statistical estimation problems. We conclude that accuracy in this system was insufficient for high-precision purposes such as finding nests. However, in the absence of a dense array of fixed receivers, the use of drone-borne Motus receivers may be a cost-effective way to augment the quantity and quality of data, relative to deploying personnel in difficult-to-access terrain. Full article
(This article belongs to the Special Issue Drones for Biodiversity Conservation and Ecological Monitoring)
Show Figures

Graphical abstract

Back to TopTop