Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (3)

Search Parameters:
Keywords = folded waveguide (FWG)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
10 pages, 6142 KB  
Communication
A 237 GHz Traveling Wave Tube for Cloud Radar
by Ying Li, Pan Pan, Bowen Song, Lin Zhang and Jinjun Feng
Electronics 2023, 12(10), 2153; https://doi.org/10.3390/electronics12102153 - 9 May 2023
Cited by 1 | Viewed by 2294
Abstract
In this article, the first 237 GHz traveling wave tube (TWT) is presented as a high-power amplifier for the terahertz (THz) cloud radar. As is common with previous G-band traveling wave tubes developed at Beijing Vacuum Electronics Research Institute, the 237 GHz traveling [...] Read more.
In this article, the first 237 GHz traveling wave tube (TWT) is presented as a high-power amplifier for the terahertz (THz) cloud radar. As is common with previous G-band traveling wave tubes developed at Beijing Vacuum Electronics Research Institute, the 237 GHz traveling wave tube employs a 20 kV, 50 mA pencil electron beam focused using periodic permanent magnets (PPMs) to achieve compactness. A folded waveguide (FWG) slow-wave structure (SWS) with modified circular bends is optimized to provide high impedance and eliminate sideband oscillations. Limited by insufficient drive power, this device is not saturated. The measured maximum output power and gain are 8.9 W and 35.7 dB, and the 3 dB gain bandwidth achieves 4 GHz. Full article
Show Figures

Figure 1

10 pages, 3506 KB  
Article
Investigation of a Miniaturized E-Band Cosine-Vane Folded Waveguide Traveling-Wave Tube for Wireless Communication
by Kexin Ma, Jun Cai and Jinjun Feng
Electronics 2021, 10(24), 3054; https://doi.org/10.3390/electronics10243054 - 7 Dec 2021
Cited by 2 | Viewed by 2570
Abstract
To realize the miniaturization of E-band traveling-wave tubes (TWTs), the size analysis and optimization design were carried out based on an improved cosine-vane folded waveguide (CV-FWG) slow-wave structure (SWS) that operates in a low voltage. In addition, a novel miniaturized T-shaped coupler was [...] Read more.
To realize the miniaturization of E-band traveling-wave tubes (TWTs), the size analysis and optimization design were carried out based on an improved cosine-vane folded waveguide (CV-FWG) slow-wave structure (SWS) that operates in a low voltage. In addition, a novel miniaturized T-shaped coupler was proposed to achieve a good voltage standing wave rate (VSWR) in a broad bandwidth. The coupler length was reduced by as much as 77% relative to an original design. With higher coupling impedance, the radius and length of the shortened SWS were optimized as 1.3 mm and 50 mm, respectively. Using microwave tube simulator suit (MTSS) and CST particle studio (PS), 3D beam–wave simulations at 9400 V, 20 mA predicted a gain of 20 dB and a saturated output power of 9 W. The simulation results for CV-FWG TWTs were compared with conventional FWG TWTs from 81 GHz to 86 GHz, showing significant performance advantages with excellent flatness for high-rate wireless communication in the future. The CV-FWG SWS circuit will be fabricated by 3D printing, and this work is underway. Full article
(This article belongs to the Special Issue High-Frequency Vacuum Electron Devices)
Show Figures

Figure 1

15 pages, 8573 KB  
Article
Novel Dual Beam Cascaded Schemes for 346 GHz Harmonic-Enhanced TWTs
by Ruifeng Zhang, Qi Wang, Difu Deng, Yao Dong, Fei Xiao, Gil Travish and Huarong Gong
Electronics 2021, 10(2), 195; https://doi.org/10.3390/electronics10020195 - 16 Jan 2021
Cited by 2 | Viewed by 2297
Abstract
The applications of terahertz (THz) devices in communication, imaging, and plasma diagnostic are limited by the lack of high-power, miniature, and low-cost THz sources. To develop high-power THz source, the high-harmonic traveling wave tube (HHTWT) is introduced, which is based on the theory [...] Read more.
The applications of terahertz (THz) devices in communication, imaging, and plasma diagnostic are limited by the lack of high-power, miniature, and low-cost THz sources. To develop high-power THz source, the high-harmonic traveling wave tube (HHTWT) is introduced, which is based on the theory that electron beam modulated by electromagnetic (EM) waves can generate high harmonic signals. The principal analysis and simulation results prove that amplifying high harmonic signal is a promising method to realize high-power THz source. For further improvement of power and bandwidth, two novel dual-beam schemes for high-power 346 GHz TWTs are proposed. The first TWT is comprised of two cascaded slow wave structures (SWSs), among which one SWS can generate a THz signal by importing a millimeter-wave signal and the other one can amplify THz signal of interest. The simulation results show that the output power exceeds 400 mW from 340 GHz to 348 GHz when the input power is 200 mW from 85 GHz to 87 GHz. The peak power of 1100 mW is predicted at 346 GHz. The second TWT is implemented by connecting a pre-amplification section to the input port of the HHTWT. The power of 600 mW is achieved from 338 GHz to 350 GHz. The 3-dB bandwidth is 16.5 GHz. In brief, two novel schemes have advantages in peak power and bandwidth, respectively. These two dual-beam integrated schemes, constituted respectively by two TWTs, also feature rugged structure, reliable performance, and low costs, and can be considered as promising high-power THz sources. Full article
Show Figures

Figure 1

Back to TopTop