Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (3)

Search Parameters:
Keywords = folate receptor beta

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 6704 KiB  
Article
Conjugated β-Cyclodextrin Enhances the Affinity of Folic Acid towards FRα: Molecular Dynamics Study
by Mohammad G. Al-Thiabat, Amirah Mohd Gazzali, Noratiqah Mohtar, Vikneswaran Murugaiyah, Ezatul Ezleen Kamarulzaman, Beow Keat Yap, Noorsaadah Abd Rahman, Rozana Othman and Habibah A. Wahab
Molecules 2021, 26(17), 5304; https://doi.org/10.3390/molecules26175304 - 31 Aug 2021
Cited by 25 | Viewed by 4520
Abstract
Drug targeting is a progressive area of research with folate receptor alpha (FRα) receiving significant attention as a biological marker in cancer drug delivery. The binding affinity of folic acid (FA) to the FRα active site provides a basis for recognition of FRα. [...] Read more.
Drug targeting is a progressive area of research with folate receptor alpha (FRα) receiving significant attention as a biological marker in cancer drug delivery. The binding affinity of folic acid (FA) to the FRα active site provides a basis for recognition of FRα. In this study, FA was conjugated to beta-cyclodextrin (βCD) and subjected to in silico analysis (molecular docking and molecular dynamics (MD) simulation (100 ns)) to investigate the affinity and stability for the conjugated system compared to unconjugated and apo systems (ligand free). Docking studies revealed that the conjugated FA bound into the active site of FRα with a docking score (free binding energy < −15 kcal/mol), with a similar binding pose to that of unconjugated FA. Subsequent analyses from molecular dynamics (MD) simulations, root mean square deviation (RMSD), root mean square fluctuation (RMSF), and radius of gyration (Rg) demonstrated that FA and FA–βCDs created more dynamically stable systems with FRα than the apo-FRα system. All systems reached equilibrium with stable RMSD values ranging from 1.9–2.4 Å and the average residual fluctuation values of the FRα backbone atoms for all residues (except for terminal residues ARG8, THR9, THR214, and LEU215) were less than 2.1 Å with a consistent Rg value of around 16.8 Å throughout the MD simulation time (0–100 ns). The conjugation with βCD improved the stability and decreased the mobility of all the residues (except residues 149–151) compared to FA–FRα and apo-FRα systems. Further analysis of H-bonds, binding free energy (MM-PBSA), and per residue decomposition energy revealed that besides APS81, residues HIS20, TRP102, HIS135, TRP138, TRP140, and TRP171 were shown to have more favourable energy contributions in the holo systems than in the apo-FRα system, and these residues might have a direct role in increasing the stability of holo systems. Full article
(This article belongs to the Special Issue Molecular Dynamics Simulations: Advances and Applications)
Show Figures

Figure 1

17 pages, 2953 KiB  
Article
Folate Receptor Beta as a Direct and Indirect Target for Antibody-Based Cancer Immunotherapy
by Allison G. Roy, J. Michael Robinson, Prannda Sharma, Alba Rodriguez-Garcia, Mathilde A. Poussin, Cheryl Nickerson-Nutter and Daniel J. Powell
Int. J. Mol. Sci. 2021, 22(11), 5572; https://doi.org/10.3390/ijms22115572 - 25 May 2021
Cited by 17 | Viewed by 4898
Abstract
Folate receptor beta (FRβ) is a folate binding receptor expressed on myeloid lineage hematopoietic cells. FRβ is commonly expressed at high levels on malignant blasts in patients with acute myeloid leukemia (AML), as well as on M2 polarized tumor-associated macrophages (TAMs) in the [...] Read more.
Folate receptor beta (FRβ) is a folate binding receptor expressed on myeloid lineage hematopoietic cells. FRβ is commonly expressed at high levels on malignant blasts in patients with acute myeloid leukemia (AML), as well as on M2 polarized tumor-associated macrophages (TAMs) in the tumor microenvironment of many solid tumors. Therefore, FRβ is a potential target for both direct and indirect cancer therapy. We demonstrate that FRβ is expressed in both AML cell lines and patient-derived AML samples and that a high-affinity monoclonal antibody against FRβ (m909) has the ability to cause dose- and expression-dependent ADCC against these cells in vitro. Importantly, we find that administration of m909 has a significant impact on tumor growth in a humanized mouse model of AML. Surprisingly, m909 functions in vivo with and without the infusion of human NK cells as mediators of ADCC, suggesting potential involvement of mouse macrophages as effector cells. We also found that TAMs from primary ovarian ascites samples expressed appreciable levels of FRβ and that m909 has the ability to cause ADCC in these samples. These results indicate that the targeting of FRβ using m909 has the potential to limit the outgrowth of AML in vitro and in vivo. Additionally, m909 causes cytotoxicity to TAMs in the tumor microenvironment of ovarian cancer warranting further investigation of m909 and its derivatives as therapeutic agents in patients with FRβ-expressing cancers. Full article
(This article belongs to the Special Issue Immunological Approaches in Tumor Therapy)
Show Figures

Figure 1

8 pages, 980 KiB  
Opinion
Can Nuclear Imaging of Activated Macrophages with Folic Acid-Based Radiotracers Serve as a Prognostic Means to Identify COVID-19 Patients at Risk?
by Cristina Müller, Roger Schibli and Britta Maurer
Pharmaceuticals 2020, 13(9), 238; https://doi.org/10.3390/ph13090238 - 9 Sep 2020
Cited by 9 | Viewed by 4234
Abstract
Herein, we discuss the potential role of folic acid-based radiopharmaceuticals for macrophage imaging to support clinical decision-making in patients with COVID-19. Activated macrophages play an important role during coronavirus infections. Exuberant host responses, i.e., a cytokine storm with increase of macrophage-related cytokines, such [...] Read more.
Herein, we discuss the potential role of folic acid-based radiopharmaceuticals for macrophage imaging to support clinical decision-making in patients with COVID-19. Activated macrophages play an important role during coronavirus infections. Exuberant host responses, i.e., a cytokine storm with increase of macrophage-related cytokines, such as TNFα, IL-1β, and IL-6 can lead to life-threatening complications, such as acute respiratory distress syndrome (ARDS), which develops in approximately 20% of the patients. Diverse immune modulating therapies are currently being tested in clinical trials. In a preclinical proof-of-concept study in experimental interstitial lung disease, we showed the potential of 18F-AzaFol, an 18F-labeled folic acid-based radiotracer, as a specific novel imaging tool for the visualization and monitoring of macrophage-driven lung diseases. 18F-AzaFol binds to the folate receptor-beta (FRβ) that is expressed on activated macrophages involved in inflammatory conditions. In a recent multicenter cancer trial, 18F-AzaFol was successfully and safely applied (NCT03242993). It is supposed that the visualization of activated macrophage-related disease processes by folate radiotracer-based nuclear imaging can support clinical decision-making by identifying COVID-19 patients at risk of a severe disease progression with a potentially lethal outcome. Full article
(This article belongs to the Special Issue COVID-19 in Pharmaceuticals)
Show Figures

Graphical abstract

Back to TopTop