Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (4)

Search Parameters:
Keywords = focal cortical dysplasia type III

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 2253 KiB  
Article
Identification of Novel Mosaic Variants in Focal Epilepsy-Associated Patients’ Brain Lesions
by Camila Araújo Bernardino Garcia, Muhammad Zubair, Marcelo Volpon Santos, Sang Hyun Lee, Ian Alfred Graham, Valentina Stanley, Renee D. George, Joseph G. Gleeson, Hélio Rubens Machado and Xiaoxu Yang
Genes 2025, 16(4), 421; https://doi.org/10.3390/genes16040421 - 31 Mar 2025
Viewed by 902
Abstract
Focal cortical dysplasia type III (FCDIII) is a rare and complex condition associated with drug-resistant epilepsy and often characterized by cortical lamination abnormalities, along with a variety of neoplasms and vascular abnormalities. Objectives: This study aimed to elucidate the genetic architecture underlying FCDIII [...] Read more.
Focal cortical dysplasia type III (FCDIII) is a rare and complex condition associated with drug-resistant epilepsy and often characterized by cortical lamination abnormalities, along with a variety of neoplasms and vascular abnormalities. Objectives: This study aimed to elucidate the genetic architecture underlying FCDIII through the use of whole-exome sequencing (WES) of brain and peripheral blood samples from 19 patients who had been diagnosed with FCDIII. Methods: Variants were identified through a series of machine-learning-based detection and functional prediction methods and were not previously associated with FCDIII. Mosaic fraction scores of these variants validated the variants’ pathogenicity, and in silico and gene ontology enrichment analyses demonstrated that these variants had severe destabilizing effects on protein structure. Results: We reported ten novel pathogenic somatic missense and loss of function variants across eight genes, including CNTNAP2, ACY1, SERAC1, and BRAF. Genetic alterations were linked to clinical manifestations, such as encephalopathies and intellectual disabilities, thereby emphasizing their role as molecular drivers of FCDIII. Conclusions: We demonstrated that next-generation sequencing-based mosaic variant-calling pipelines are useful for the genetic diagnosis of FCDIII, opening up avenues for targeted therapies, yet further research is required to validate these findings and examine their therapeutic implications. Full article
(This article belongs to the Special Issue Genomic Mosaicism in Human Development and Diseases)
Show Figures

Figure 1

15 pages, 7436 KiB  
Article
Notch-1 Immunopositivity in Brain Lesions Associated with Pharmacoresistant Epilepsy
by Dimitar Metodiev, Petia Dimova, Margarita Ruseva, Dimitar Parvanov, Rumiana Ganeva, Georgi Stamenov, Sevdalin Nachev, Vesela Ivanova, Rumen Marinov and Krassimir Minkin
Neuroglia 2025, 6(1), 7; https://doi.org/10.3390/neuroglia6010007 - 8 Feb 2025
Viewed by 807
Abstract
Background: The Notch signaling pathway is an important regulator of stem cell activity in various tissues, including the central nervous system. It has been implicated in neurodevelopmental processes, including neuronal differentiation and synaptic plasticity. Research suggests that its expression may be associated with [...] Read more.
Background: The Notch signaling pathway is an important regulator of stem cell activity in various tissues, including the central nervous system. It has been implicated in neurodevelopmental processes, including neuronal differentiation and synaptic plasticity. Research suggests that its expression may be associated with certain epileptogenic lesions, particularly those with neurodevelopmental origin. The aim of this study was to investigate the expression of Notch-1 in brain biopsies from various cases of pharmacoresistant epilepsy. Methods: Here, we used immunohistochemistry staining to retrospectively analyze 128 developmental lesions associated with pharmacoresistant epilepsy, including 13 cases with focal cortical dysplasia (FCD) type I, 39 with FCD type II, 37 with hippocampal sclerosis (HS), 23 with FCD IIIc, 9 with mild malformations of cortical development (MCD), 4 cases with mild malformation of cortical development with oligodendroglial hyperplasia and epilepsy (MOGHE), and 3 with tuberous sclerosis (TS). The tissues were stained for Neurofilament protein, Vimentin, S-100 protein, NeuN, and GFAP, as well as the stem cell marker Notch-1. Tissue that stained positively for Notch-1 was further characterized. Results: A positive Notch-1 reaction was found in all cases of FCD type IIb and TS, where it appeared in balloon cells but not in dysmorphic neurons, and in a single case of meningioangiomatosis (FCD IIIc), where it stained spider-like cells. Notch-1-positive cells showed a stem-like, glio-neuronal precursor immunophenotype. No staining was observed in the remaining cases with FCD type I, type III, HS, mild MCD, and MOGHE. Conclusions: Notch-1 displays a distinct pattern of expression in some epileptogenic lesions, potentially highlighting a stem cell-like origin or neurodevelopmental abnormalities contributing to pharmacoresistant epilepsy; however, it is not a general marker of such lesions. Its differential expression may prove useful in distinguishing between different types of FCD or other cortical malformations, which could assist in both their diagnosis and potentially in the development of more targeted therapeutic approaches. Further studies with different stem cell markers are needed in this direction. Full article
Show Figures

Figure 1

12 pages, 1024 KiB  
Article
An Assessment of the Pathological Classification and Postoperative Outcome of Focal Cortical Dysplasia by Simultaneous Hybrid PET/MRI
by Ning Wang, Lingjie Wang, Yixing Yu, Guangzheng Li, Changhao Cao, Rui Xu, Bin Jiang, Yongfeng Bi, Minjia Xie, Chunhong Hu, Wei Gao and Mo Zhu
Brain Sci. 2023, 13(4), 611; https://doi.org/10.3390/brainsci13040611 - 4 Apr 2023
Viewed by 2223
Abstract
Objectives: The purpose of this research was to investigate whether MRI and Simultaneous Hybrid PET/MRI images were consistent in the histological classification of patients with focal cortical dysplasia. Additionally, this research aimed to evaluate the postoperative outcomes with the MRI and Simultaneous Hybrid [...] Read more.
Objectives: The purpose of this research was to investigate whether MRI and Simultaneous Hybrid PET/MRI images were consistent in the histological classification of patients with focal cortical dysplasia. Additionally, this research aimed to evaluate the postoperative outcomes with the MRI and Simultaneous Hybrid PET/MRI images of focal cortical dysplasia. Methods: A total of 69 cases in this research were evaluated preoperatively for drug-resistant seizures, and then surgical resection procedures of the epileptogenic foci were performed. The postoperative result was histopathologically confirmed as focal cortical dysplasia, and patients then underwent PET and MRI imaging within one month of the seizure. In this study, head MRI was performed using a 3.0 T magnetic resonance scanner (Philips) to obtain 3D T1WI images. The Siemens Biograph 16 scanner was used for a routine scanning of the head to obtain PET images. BrainLAB’s iPlan software was used to fuse 3D T1 images with PET images to obtain PET/MRI images. Results: Focal cortical dysplasia was divided into three types according to ILAE: three patients were classified as type I, twenty-five patients as type II, and forty-one patients as type III. Patients age of onset under 18 and age of operation over 18 had a longer duration (p = 0.036, p = 0.021). MRI had a high lesion detection sensitivity of type III focal cortical dysplasia (p = 0.003). Simultaneous Hybrid PET/MRI showed high sensitivity in detecting type II and III focal cortical dysplasia lesions (p = 0.037). The lesions in Simultaneous Hybrid PET/MRI-positive focal cortical dysplasia patients were mostly located in the temporal and multilobar (p = 0.005, 0.040). Conclusion: Simultaneous Hybrid PET/MRI has a high accuracy in detecting the classification of focal cortical dysplasia. The results of this study indicate that patients with focal cortical dysplasia with positive Simultaneous Hybrid PET/MRI have better postoperative prognoses. Full article
(This article belongs to the Section Neurotechnology and Neuroimaging)
Show Figures

Graphical abstract

7 pages, 218 KiB  
Article
Malformations of Cortical Development, Cognitive Involvementand Epilepsy: A Single Institution Experience in 19 Young Patients
by Valeria Venti, Maria Chiara Consentino, Pierluigi Smilari, Filippo Greco, Claudia Francesca Oliva, Agata Fiumara, Raffaele Falsaperla, Martino Ruggieri and Piero Pavone
Children 2021, 8(8), 637; https://doi.org/10.3390/children8080637 - 26 Jul 2021
Cited by 2 | Viewed by 2169
Abstract
Background. Malformations of cortical development (MCD) include a wide range of congenital disorders mostly causing severe cognitive dysfunction and epilepsy. Objective: to report on clinical features including cognitive involvement, epileptic seizures with response to antiseizure medications, comorbidities in young patients affected by MCD [...] Read more.
Background. Malformations of cortical development (MCD) include a wide range of congenital disorders mostly causing severe cognitive dysfunction and epilepsy. Objective: to report on clinical features including cognitive involvement, epileptic seizures with response to antiseizure medications, comorbidities in young patients affected by MCD and followed in a single tertiary hospital. Patients and methods: A retrospective review of the medical records and magnetic resonance images (MRI) of 19 young patients with an age ranging between eight days and fifteen years affected by MCD and admitted to Pediatrics Department University of Catania, Italy from October 2009 and October 2020 were selected. Patients were distinguished in three groups following the Barcovich et al. 2012 classification for MCD: 4 (21%) in Group I; 8 (42%) in Group II; and, and 7 (37%) in Group III. Clinical features and MRI of the patients including cognitive involvement, epilepsy type and response to drugs treatment were analyzed. Results: In Group I, two patients showed cortical dysplasia and two dysembryoplastic neuroepithelial tumors plus focal cortical dysplasia; developmental delay/intellectual disability (DD/ID) was severe in one, moderate in one and absent in two; the type of seizures was in all the cases focal to bilateral tonic-clonic (FBTCs), and drug resistant was found in one case. In Group II, three patients showed neuronal hetero-topias and five had pachygyria-lissencephaly: DD/ID was severe in four, moderate in two, and absent in two; the type of seizure was focal (FS) in five, focal to bilateral tonic-clonic (FBTCs) in two, infantile spasms (IS) in one, and drug resistant was found in three. In Group III, six showed polymicrogyria and one schizencephaly: DD/ID was found severe in five, moderate in two, and the type of seizure was focal (FS) in five, FBTCS in two, and drug resistance was found in three. Full article
(This article belongs to the Special Issue Advances in Research on Neurologic Related Diseases in Children)
Back to TopTop