Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (5)

Search Parameters:
Keywords = flixweed

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 17600 KiB  
Article
Using RNA-Seq Analysis to Select Key Genes Related to Seed Dormancy in ALS-Inhibiting Resistant Descurainia sophia with Pro-197-Thr Mutation
by Xian Xu, Bochui Zhao, Beibei Shen, Zhizun Qi, Jianping Wang, Haiyan Cui, Binghua Li, Silong Chen, Guiqi Wang and Xiaomin Liu
Plants 2024, 13(16), 2305; https://doi.org/10.3390/plants13162305 - 19 Aug 2024
Cited by 1 | Viewed by 1325
Abstract
Flixweed (Descurainia sophia) is a weed that seriously affects wheat fields in China. Over the past 20 years, it has evolved resistance to the herbicide tribenuron-methyl. In the present study, a resistant D. sophia population with a Pro-197-Thr mutation of acetolactate [...] Read more.
Flixweed (Descurainia sophia) is a weed that seriously affects wheat fields in China. Over the past 20 years, it has evolved resistance to the herbicide tribenuron-methyl. In the present study, a resistant D. sophia population with a Pro-197-Thr mutation of acetolactate synthetase (ALS) was found to have a resistance index of 457.37 for tribenuron-methyl. Under the same growth conditions, the seeds of resistant (R) and susceptible (S) populations exhibited similar vitality but the germination rates of R seeds were higher than those of S seeds. This result demonstrated that seed dormancy periods were shorter in the R seeds. RNA-Seq transcriptome analysis was then used to choose candidate genes that could regulate seed dormancy pathways in the R population. A total of 504,976,046 clean reads were selected from nine RNA-Seq libraries and assembled into 79,729 unigenes. Among these, 33,476 unigenes were assigned to 51 GO subgroups, and 26,117 unigenes were assigned to 20 KEGG secondary metabolic pathways. Next, 2473 differentially expressed genes (DEGs) were divided into three groups, as follows: G-24 h (germinating seeds) vs. D (dormant seeds); G-48 h (germinated seeds) vs. D; and G-48 h vs. G-24 h. From these 2473 DEGs, 8 were selected as candidate dormancy unigenes for the R population if their expression levels continuously decreased during the seed germination progress and their functional annotations were related to plant seed dormancy. One candidate unigene was annotated as CYP707A2; two unigenes were annotated as the transcription factors TGA4 and TGA2; one unigene was annotated as the cystathionine beta-synthase gene; and four unigenes could not be annotated as any gene listed in the six public databases. However, qRT-PCR-validated results showed that, during the germination of R seeds, the expression of the three candidate unigenes first decreased and then increased, indicating that they may have other growth-regulating functions in R populations. In brief, the dormancy function of the eight candidate dormancy unigenes needs to be further studied. Full article
(This article belongs to the Section Plant Genetics, Genomics and Biotechnology)
Show Figures

Figure 1

26 pages, 3259 KiB  
Article
Antioxidant Properties and Prediction of Bioactive Peptides Produced from Flixweed (sophia, Descurainis sophia L.) and Camelina (Camelina sativa (L.) Crantz) Seed Meal: Integrated In Vitro and In Silico Studies
by Na Thi Ty Ngo, Tharindu R. L. Senadheera and Fereidoon Shahidi
Plants 2023, 12(20), 3575; https://doi.org/10.3390/plants12203575 - 14 Oct 2023
Cited by 7 | Viewed by 2323
Abstract
Flixweed (sophia) seed meal and camelina, both by-products of oil processing, were employed to generate protein hydrolysates by applying Flavourzyme and Alcalase. This study aimed to integrate in vitro and in silico methods to analyze sophia and camelina protein hydrolysates for releasing potent [...] Read more.
Flixweed (sophia) seed meal and camelina, both by-products of oil processing, were employed to generate protein hydrolysates by applying Flavourzyme and Alcalase. This study aimed to integrate in vitro and in silico methods to analyze sophia and camelina protein hydrolysates for releasing potent antioxidative, dipeptidyl peptidase IV (DPP IV) inhibitors and angiotensin-converting enzyme (ACE) inhibitory peptides. In vitro methods were used to investigate the antioxidant potential of sophia/camelina protein hydrolysates. Bioinformatics techniques, including Peptideranker, BIOPEP, Toxinpred, AlgPred, and SwissADME, were employed to obtain the identification of bioactive peptides produced during the hydrolysis process. Protein hydrolysates produced from sophia and camelina seed meal exhibited higher ABTS and DPPH radical scavenging activities Ithan their protein isolates. Among the produced protein hydrolysates, Alcalase-treated samples showed the highest oxygen radical absorbance capacity and hydroxyl radical scavenging activity. In addition, sophia/camelina hydrolysates prevented hydroxyl and peroxyl radical-induced DNA scission and LDL cholesterol oxidation. In silico proteolysis was conducted on Alcalase-treated samples, and resultant peptides showed potential DPP IV and ACE-inhibitory activities. Identified peptides were further assessed for their toxicity and medicinal properties. Results indicate that all digestive-resistant peptides were non-toxic and had desirable drug-like properties. The findings of this study suggest that sophia/camelina protein hydrolysates are promising candidates for functional foods, nutraceuticals, and natural therapeutics. Full article
Show Figures

Figure 1

14 pages, 2365 KiB  
Article
The Metabolism of a Novel Cytochrome P450 (CYP77B34) in Tribenuron-Methyl-Resistant Descurainia sophia L. to Herbicides with Different Mode of Actions
by Jing Shen, Qian Yang, Lubo Hao, Lingling Zhang, Xuefeng Li and Mingqi Zheng
Int. J. Mol. Sci. 2022, 23(10), 5812; https://doi.org/10.3390/ijms23105812 - 22 May 2022
Cited by 18 | Viewed by 3080
Abstract
Descurainia sophia L. (flixweeds) is a noxious broad-leaf weed infesting winter wheat fields in China that has evolved high resistance to tribenuron-methyl. In this work, a brand new gene CYP77B34 was cloned from tribenuron-methyl-resistant (TR) D. sophia and transferred into Arabidopsis thaliana, [...] Read more.
Descurainia sophia L. (flixweeds) is a noxious broad-leaf weed infesting winter wheat fields in China that has evolved high resistance to tribenuron-methyl. In this work, a brand new gene CYP77B34 was cloned from tribenuron-methyl-resistant (TR) D. sophia and transferred into Arabidopsis thaliana, and the sensitivities of Arabidopsis with or without the CYP77B34 transgene to herbicides with a different mode of actions (MoAs) were tested. Compared to Arabidopsis expressing pCAMBIA1302-GFP (empty plasmid), Arabidopsis transferring pCAMBIA1302-CYP77B34 (recombinant plasmid) became resistant to acetolactate synthase (ALS)-inhibiting herbicide tribenuron-methyl, protoporphyrinogen oxidase (PPO)-inhibiting herbicides carfentrazone-ethyl and oxyfluorfen. Cytochrome P450 inhibitor malathion could reverse the resistance to tribenuron-methyl, carfentrazone-ethyl and oxyfluorfen in transgenic Arabidopsis plants. In addition, the metabolic rates of tribenuron-methyl in Arabidopsis expressing CYP77B34 were significantly higher than those in Arabidopsis expressing pCAMBIA1302-GFP. Other than that, the transgenic plants showed some tolerance to very-long-chain fatty acid synthesis (VLCFAs)-inhibiting herbicide pretilachlor and photosystem (PS) II-inhibiting herbicide bromoxynil. Subcellular localization revealed that the CYP77B34 protein was located in the endoplasmic reticulum (ER). These results clearly indicated that CYP77B34 mediated D. sophia resistance to tribenuron-methyl and may have been involved in D. sophia cross-resistance to carfentrazone-ethyl, oxyfluorfen, pretilachlor and bromoxynil. Full article
(This article belongs to the Section Biochemistry)
Show Figures

Figure 1

9 pages, 170 KiB  
Article
Downy Brome (Bromus tectorum L.) and Broadleaf Weed Control in Winter Wheat with Acetolactate Synthase-Inhibiting Herbicides
by Seshadri S. Reddy, Phillip W. Stahlman and Patrick W. Geier
Agronomy 2013, 3(2), 340-348; https://doi.org/10.3390/agronomy3020340 - 18 Apr 2013
Cited by 14 | Viewed by 6991
Abstract
A study was conducted for three seasons in northwest Kansas, USA to evaluate acetolactate synthase (ALS)-inhibiting herbicides for downy brome (Bromus tectorum L.) and winter annual broadleaf weed control in winter wheat. Herbicides included pyroxsulam at 18.4 g ai ha−1, [...] Read more.
A study was conducted for three seasons in northwest Kansas, USA to evaluate acetolactate synthase (ALS)-inhibiting herbicides for downy brome (Bromus tectorum L.) and winter annual broadleaf weed control in winter wheat. Herbicides included pyroxsulam at 18.4 g ai ha−1, propoxycarbazone-Na at 44 g ai ha−1, premixed propoxycarbazone-Na & mesosulfuron-methyl at 27 g ai ha−1, and sulfosulfuron at 35 g ai ha−1. The herbicides were applied postemergence in fall and spring seasons. Averaged over time of application, no herbicide controlled downy brome more than 78% in any year. When downy brome densities were high, control was less than 60%. Pyroxsulam controlled downy brome greater than or similar to other herbicides tested. Flixweed (Descurainia sophia L.), blue mustard [Chorispora tenella (Pallas) DC.], and henbit (Lamium amplexicaule L.) control did not differ among herbicide treatments. All herbicides tested controlled flixweed and blue mustard at least 87% and 94%, respectively. However, none of the herbicides controlled henbit more than 73%. Fall herbicide applications improved weed control compared to early spring applications; improvement ranged from 3% to 31% depending on the weed species. Henbit control was greatly decreased by delaying herbicide applications until spring compared to fall applications (49% vs. 80% control). Herbicide injury was observed in only two instances. The injury was ≤13% with no difference between herbicides and the injury did not impact final plant height or grain yield. Full article
(This article belongs to the Special Issue Weed Management and Herbicide Resistance)
8 pages, 193 KiB  
Article
Determination of the Volatile Composition in Essential Oil of Descurainia sophia (L.) Webb ex Prantl (Flixweed) by Gas Chromatography/Mass Spectrometry (GC/MS)
by Jing Li, Xingang Liu, Fengshou Dong, Jun Xu, Yongquan Zheng and Weili Shan
Molecules 2010, 15(1), 233-240; https://doi.org/10.3390/molecules15010233 - 8 Jan 2010
Cited by 37 | Viewed by 13593
Abstract
Exhaustive hydro-distillation of Descurainia sophia (L.) Webb ex Prantl (flixweed) collected from two different locations (Cangzhou city-Sample 1 and Beijing city-Sample 2) gave in both cases yellowish colored oils in 0.31 and 0.26% yield, respectively. Detailed chemical composition of the essential oils was [...] Read more.
Exhaustive hydro-distillation of Descurainia sophia (L.) Webb ex Prantl (flixweed) collected from two different locations (Cangzhou city-Sample 1 and Beijing city-Sample 2) gave in both cases yellowish colored oils in 0.31 and 0.26% yield, respectively. Detailed chemical composition of the essential oils was analyzed by GC and GC/MS, and forty and thirty-eight compounds were identified. The results indicated that the most abundant component of Sample 1were cis-β-ocimene (20.1%), menthol (11.27%), neoisomenthyl acetate (3.5%), alloaromadendrene (2.28%) and longicyclene (2.25%). Compared with the constituents of Sample 1, several chemical compounds such as 1,8-cineole, α-eudesmol, cis, trans-farnesol and β-pinene were not detected in Sample 2 although it was similarly dominated by cis-β-ocimene (17.12%), menthol (10.7%) and neoisomenthyl acetate (2.96%). Final analysis of the chemical constituents in the essential oils of the two samples showed similarity in their chemical composition, but the relative content of all shared chemical constituents in Sample 2 was lower than that in Sample 1. Full article
Back to TopTop