Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (3)

Search Parameters:
Keywords = ferromagnetic electrocatalysts

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 3952 KiB  
Article
Investigating Layered Topological Magnetic Materials as Efficient Electrocatalysts for the Hydrogen Evolution Reaction under High Current Densities
by Sanju Gupta, Hanna Świątek, Mirosław Sawczak, Tomasz Klimczuk and Robert Bogdanowicz
Catalysts 2024, 14(10), 676; https://doi.org/10.3390/catal14100676 - 1 Oct 2024
Cited by 1 | Viewed by 1267
Abstract
Despite considerable progress, high-performing durable catalysts operating under large current densities (i.e., >1000 mA/cm2) are still lacking. To discover platinum group metal-free (PGM-free) electrocatalysts for sustainable energy, our research involves investigating layered topological magnetic materials (semiconducting ferromagnets) as highly efficient electrocatalysts [...] Read more.
Despite considerable progress, high-performing durable catalysts operating under large current densities (i.e., >1000 mA/cm2) are still lacking. To discover platinum group metal-free (PGM-free) electrocatalysts for sustainable energy, our research involves investigating layered topological magnetic materials (semiconducting ferromagnets) as highly efficient electrocatalysts for the hydrogen evolution reaction under high current densities and establishes the novel relations between structure and electrochemical property mechanisms. The materials of interest include transition metal trihalides, i.e., CrCl3, VCl3, and VI3, wherein a structural unit, the layered structure, is formed by Cr (or V) atoms sandwiched between two halides (Cl or I), forming a tri-layer. A few layers of quantum crystals were exfoliated (~50−60 nm), encapsulated with graphene, and electrocatalytic HER tests were conducted in acid (0.5M H2SO4) and alkaline (1M KOH) electrolytes. We find a reasonable HER activity evolved requiring overpotentials in a range of 30–50 mV under 10 mA cm−2 and 400−510 mV (0.5M H2SO4) and 280−500 mV (1M KOH) under −1000 mA cm−2. Likewise, the Tafel slopes range from 27 to 36 mV dec−1 (Volmer–Tafel) and 110 to 190 mV dec−1 (Volmer–Herovsky), implying that these mechanisms work at low and high current densities, respectively. Weak interlayer coupling, spontaneous surface oxidation, the presence of a semi-oxide subsurface (e.g., O–CrCl3), intrinsic Cl (or I) vacancy defects giving rise to in-gap states, electron redistribution (orbital hybridization) affecting the covalency, and sufficiently conductive support interaction lowering the charge transfer resistance endow the optimized adsorption/desorption strength of H* on active sites and favorable electrocatalytic properties. Such behavior is expedited for bi-/tri-layers while exemplifying the critical role of quantum nature electrocatalysts with defect sites for industrial-relevant conditions. Full article
(This article belongs to the Section Catalysis for Sustainable Energy)
Show Figures

Figure 1

25 pages, 4827 KiB  
Review
Molecular Catalysts for OER/ORR in Zn–Air Batteries
by Evgeny V. Rebrov and Peng-Zhao Gao
Catalysts 2023, 13(9), 1289; https://doi.org/10.3390/catal13091289 - 10 Sep 2023
Cited by 38 | Viewed by 6165
Abstract
Zn–air batteries are becoming the promising power source for small electronic devices and electric vehicles. They provide a relatively high specific energy density at relatively low cost. This review presents exciting advances and challenges related to the development of molecular catalysts for cathode [...] Read more.
Zn–air batteries are becoming the promising power source for small electronic devices and electric vehicles. They provide a relatively high specific energy density at relatively low cost. This review presents exciting advances and challenges related to the development of molecular catalysts for cathode reactions in Zn–air batteries. Bifunctional electrocatalysts for oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) play the main role in improving performance of reversible fuel cell and metal–air batteries. The catalyst development strategies are reviewed, along with strategies to enhance catalyst performance by application of magnetic field. Proper design of bifunctional molecular ORR/OER catalysts allows the prolongment of the battery reversibility to a few thousand cycles and reach of energy efficiencies of over 70%. Full article
(This article belongs to the Special Issue State of the Art in Molecular Catalysis in Europe)
Show Figures

Graphical abstract

14 pages, 2553 KiB  
Article
Multifunctional Electrochemical Properties of Synthesized Non-Precious Iron Oxide Nanostructures
by Ruby Phul, M. A. Majeed Khan, Meryam Sardar, Jahangeer Ahmed and Tokeer Ahmad
Crystals 2020, 10(9), 751; https://doi.org/10.3390/cryst10090751 - 26 Aug 2020
Cited by 17 | Viewed by 2904
Abstract
Magnetic Fe3O4 nanostructures for electrochemical water splitting and supercapacitor applications were synthesized by low temperature simple wet-chemical route. The crystal structure and morphology of as-acquired nanostructures were examined by powder X-ray diffraction and transmission electron microscopy. Magnetic measurements indicate that [...] Read more.
Magnetic Fe3O4 nanostructures for electrochemical water splitting and supercapacitor applications were synthesized by low temperature simple wet-chemical route. The crystal structure and morphology of as-acquired nanostructures were examined by powder X-ray diffraction and transmission electron microscopy. Magnetic measurements indicate that the as-synthesized Fe3O4 nanostructures are ferromagnetic at room temperature. The synthesized nanostructures have a high-specific surface area of 268 m2/g, which affects the electrocatalytic activity of the electrode materials. The purity of the as-synthesized nanostructures was affirmed by Raman and X-ray Photoelectron studies. The electrochemical activity of the magnetic iron oxide nanoparticles (MIONPs) for the hydrogen evolution reaction (HER) and supercapacitors were investigated in alkaline medium (0.5 M KOH) versus Ag/AgCl at room temperature. The electrocatalysts show low onset potential (~0.18 V) and Tafel slope (~440 mV/dec) for HER. Additionally, the specific capacitance of MIONPs was investigated, which is to be ~135 ± 5 F/g at 5 mV/s in 1 M KOH. Full article
(This article belongs to the Special Issue Nanomaterials for Energy and Recycling)
Show Figures

Figure 1

Back to TopTop