Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (1)

Search Parameters:
Keywords = far-shorter time from click to customer

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 2797 KB  
Article
Lasers for Satellite Uplinks and Downlinks
by Mark Dmytryszyn, Matthew Crook and Timothy Sands
Sci 2021, 3(1), 4; https://doi.org/10.3390/sci3010004 - 4 Jan 2021
Cited by 13 | Viewed by 11620
Abstract
The use of Light Amplification by Stimulated Emission of Radiation (i.e., LASERs or lasers) by the U.S. Department of Defense is not new and includes laser weapons guidance, laser-aided measurements, and even lasers as weapons (e.g., Airborne Laser). Lasers in the support of [...] Read more.
The use of Light Amplification by Stimulated Emission of Radiation (i.e., LASERs or lasers) by the U.S. Department of Defense is not new and includes laser weapons guidance, laser-aided measurements, and even lasers as weapons (e.g., Airborne Laser). Lasers in the support of telecommunications is also not new. The use of laser light in fiber optics has shattered thoughts on communications bandwidth and throughput. Even the use of lasers in space is no longer new. Lasers are being used for satellite-to-satellite crosslinking. Laser communication can transmit orders-of-magnitude more data using orders-of-magnitude less power and can do so with minimal risk of exposure to the sending and receiving terminals. What is new is using lasers as the uplink and downlink between the terrestrial segment and the space segment of satellite systems. More so, the use of lasers to transmit and receive data between moving terrestrial segments (e.g., ships at sea, airplanes in flight) and geosynchronous satellites is burgeoning. This manuscript examines the technological maturation of employing lasers as the signal carrier for satellite communications linking terrestrial and space systems. The purpose of the manuscript is to develop key performance parameters (KPPs) to inform the U.S. Department of Defense initial capabilities documents (ICDs) for near-future satellite acquisition and development. By appreciating the history and technological challenges of employing lasers, rather than traditional radio frequency sources for satellite uplink and downlink signal carriers, this manuscript recommends ways for the U.S. Department of Defense to employ lasers to transmit and receive high bandwidth, and large-throughput data from moving platforms that need to retain low probabilities of detection, intercept, and exploit (e.g., carrier battle group transiting to a hostile area of operations, unmanned aerial vehicle collecting over adversary areas). The manuscript also intends to identify commercial sector early-adopter fields and those fields likely to adapt to laser employment for transmission and receipt. Full article
Show Figures

Figure 1

Back to TopTop