Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (3)

Search Parameters:
Keywords = extreme deep factorization machine (xDeepFM)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
27 pages, 18384 KiB  
Article
Calibration of Typhoon Track Forecasts Based on Deep Learning Methods
by Chengchen Tao, Zhizu Wang, Yilun Tian, Yaoyao Han, Keke Wang, Qiang Li and Juncheng Zuo
Atmosphere 2024, 15(9), 1125; https://doi.org/10.3390/atmos15091125 - 17 Sep 2024
Cited by 2 | Viewed by 2165
Abstract
An accurate forecast of typhoon tracks is crucial for disaster warning and mitigation. However, existing numerical weather prediction models, such as the Weather Research and Forecasting (WRF) model, still exhibit significant errors in track forecasts. This study aims to improve forecast accuracy by [...] Read more.
An accurate forecast of typhoon tracks is crucial for disaster warning and mitigation. However, existing numerical weather prediction models, such as the Weather Research and Forecasting (WRF) model, still exhibit significant errors in track forecasts. This study aims to improve forecast accuracy by correcting WRF-forecasted tracks using deep learning models, including Bidirectional Long Short-Term Memory (BiLSTM) + Convolutional Long Short-Term Memory (ConvLSTM) + Wide and Deep Learning (WDL), BiLSTM + Convolutional Gated Recurrent Unit (ConvGRU) + WDL, and BiLSTM + ConvLSTM + Extreme Deep Factorization Machine (xDeepFM), with a comparison to the Kalman Filter. The results demonstrate that the BiLSTM + ConvLSTM + WDL model reduces the 72 h track prediction error (TPE) from 255.18 km to 159.23 km, representing a 37.6% improvement over the original WRF model, and exhibits significant advantages across all evaluation metrics, particularly in key indicators such as Bias2, Mean Squared Error (MSE), and Sequence. The decomposition of MSE further validates the importance of the BiLSTM, ConvLSTM, WDL, and Temporal Normalization (TN) layers in enhancing the model’s spatio-temporal feature-capturing ability. Full article
(This article belongs to the Special Issue Applications of Artificial Intelligence in Atmospheric Sciences)
Show Figures

Figure 1

11 pages, 1353 KiB  
Article
Research on Apparel Retail Sales Forecasting Based on xDeepFM-LSTM Combined Forecasting Model
by Tian Luo, Daofang Chang and Zhenyu Xu
Information 2022, 13(10), 497; https://doi.org/10.3390/info13100497 - 15 Oct 2022
Cited by 8 | Viewed by 3489
Abstract
Accurate sales forecasting can provide a scientific basis for the management decisions of enterprises. We proposed the xDeepFM-LSTM combined forecasting model for the characteristics of sales data of apparel retail enterprises. We first used the Extreme Deep Factorization Machine (xDeepFM) model to explore [...] Read more.
Accurate sales forecasting can provide a scientific basis for the management decisions of enterprises. We proposed the xDeepFM-LSTM combined forecasting model for the characteristics of sales data of apparel retail enterprises. We first used the Extreme Deep Factorization Machine (xDeepFM) model to explore the correlation between the sales influencing features as much as possible, and then modeled the sales prediction. Next, we used the Long Short-Term Memory (LSTM) model for residual correction to improve the accuracy of the prediction model. We then designed and implemented comparison experiments between the combined xDeepFM-LSTM forecasting model and other forecasting models. The experimental results show that the forecasting performance of xDeepFM-LSTM is significantly better than other forecasting models. Compared with the xDeepFM forecasting model, the combined forecasting model has a higher optimization rate, which provides a scientific basis for apparel companies to make adjustments to adjust their demand plans. Full article
(This article belongs to the Special Issue Predictive Analytics and Data Science)
Show Figures

Figure 1

14 pages, 3490 KiB  
Article
Road Intersection Recognition via Combining Classification Model and Clustering Algorithm Based on GPS Data
by Yizhi Liu, Rutian Qing, Yijiang Zhao and Zhuhua Liao
ISPRS Int. J. Geo-Inf. 2022, 11(9), 487; https://doi.org/10.3390/ijgi11090487 - 14 Sep 2022
Cited by 12 | Viewed by 4127
Abstract
Road intersections are essential to road networks. How to precisely recognize road intersections based on GPS data is still challenging in intelligent transportation systems. Road intersection recognition involves detecting intersections and recognizing its scope. There are few works on intersections’ scope recognition. The [...] Read more.
Road intersections are essential to road networks. How to precisely recognize road intersections based on GPS data is still challenging in intelligent transportation systems. Road intersection recognition involves detecting intersections and recognizing its scope. There are few works on intersections’ scope recognition. The existing methods always focus on road intersection detection. It includes two parts: one is selecting turning points from GPS data and extracting their geometric features, another is clustering them into center coordinates of road intersections. However, the accuracy of road intersection detection still has improvement room due to two drawbacks: (1) Besides geometric features, spatial features explored from GPS data and the interactions among all features are also important to represent intersections’ semantics more accurately, and (2) How to capture the points around intersections for clustering has great impact on the accuracy of intersection detection. To solve the preceding problems, we propose a novel approach for road intersection recognition via combining a classification model and clustering algorithm based on GPS data, which involves detecting the center coordinate and computing the radius of the intersection. Firstly, we distil geometric features and spatial features from historical GPS points. These features are inputted into the Extreme Deep Factorization Machine (xDeepFM) model which is applied for capturing the GPS points nearby road intersections. Secondly, the preceding points are clustered into center coordinates of road intersections by the Density-Based Spatial Clustering of Applications with Noise algorithm (DBSCAN). Thirdly, we present a new method of radius computing by integrating Delaunay triangulation with circle shape structure. Experiments are carried out on the GPS data of Chengdu, China. Compared with some state-of-the-art methods, our approach achieves higher accuracy on road intersection recognition based on GPS data. The precision, recall, and f-measure of our proposed center coordinates detection method are respectively 99.0%, 92.7%, and 95.8% when the matching area’s radius is 30 m. Moreover, the error of the proposed radius calculation method is less than 26.5%. Full article
(This article belongs to the Special Issue Urban Geospatial Analytics Based on Crowdsourced Data)
Show Figures

Figure 1

Back to TopTop