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Abstract: Road intersections are essential to road networks. How to precisely recognize road intersec-
tions based on GPS data is still challenging in intelligent transportation systems. Road intersection
recognition involves detecting intersections and recognizing its scope. There are few works on
intersections’ scope recognition. The existing methods always focus on road intersection detection. It
includes two parts: one is selecting turning points from GPS data and extracting their geometric fea-
tures, another is clustering them into center coordinates of road intersections. However, the accuracy
of road intersection detection still has improvement room due to two drawbacks: (1) Besides geomet-
ric features, spatial features explored from GPS data and the interactions among all features are also
important to represent intersections’ semantics more accurately, and (2) How to capture the points
around intersections for clustering has great impact on the accuracy of intersection detection. To solve
the preceding problems, we propose a novel approach for road intersection recognition via combining
a classification model and clustering algorithm based on GPS data, which involves detecting the
center coordinate and computing the radius of the intersection. Firstly, we distil geometric features
and spatial features from historical GPS points. These features are inputted into the Extreme Deep
Factorization Machine (xDeepFM) model which is applied for capturing the GPS points nearby road
intersections. Secondly, the preceding points are clustered into center coordinates of road intersections
by the Density-Based Spatial Clustering of Applications with Noise algorithm (DBSCAN). Thirdly, we
present a new method of radius computing by integrating Delaunay triangulation with circle shape
structure. Experiments are carried out on the GPS data of Chengdu, China. Compared with some
state-of-the-art methods, our approach achieves higher accuracy on road intersection recognition
based on GPS data. The precision, recall, and f-measure of our proposed center coordinates detection
method are respectively 99.0%, 92.7%, and 95.8% when the matching area’s radius is 30 m. Moreover,
the error of the proposed radius calculation method is less than 26.5%.

Keywords: intelligent transportation system; road intersection recognition; trajectory data mining;
extreme deep factorization machine (xDeepFM); clustering algorithm; Delaunay triangulation

1. Introduction

With the development of an intelligent transportation system, it becomes a high con-
cern and challenge to precisely mine detailed digital road information from taxi trajectory
data [1]. As one of the vital elements in road networks, road intersections play a crucial
role in road network construction, route planning, and automatic driving [2–4]. Some ways
to extract road intersections in the past decades include field mapping and remote sensing
image recognition. The former one is time-consuming and of high labor cost. The latter
way is easily disturbed by image noise [5–8]. The process of generating remote sensing
images needs a long time and leads to difficultly in capturing the road changes in time [9].
Some companies have used mobile measuring vehicles to collect road information in recent
years, which is still of high cost and time-consuming [10].
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Owing to the maturity of the Global Positioning System (GPS) technology and the
popularization of the smart city, more and more urban vehicles are equipped with GPS
devices. The devices record a large amount of GPS trajectory data. These low-cost and
widely distributed GPS data provide a new way to automatic road extraction [11–14].

As intersections link many lanes of different directions, drivers often change their
direction at intersections before crossing ahead. That is to say, there are lots of turning
points around intersections. Thus, the traditional approach of road intersection detection
always uses geometric features of GPS data which contain turning angles and turning
distances. The turning points are detected and then clustered to be center coordinates of
road intersections [1,2,15–18]. However, there is still room for improvement due to lack of
some other spatial features.

Intersections are located at the junctions of several roads. The GPS points’ numbers
around intersections are obviously more than those of straight roads at the same intervals.
Therefore, more spatial features, especially those of the spatial neighborhood of intersec-
tions, should be considered besides geometric features. In the traditional approach, only
one algorithm is applied. Moreover, how to accurately recognize the intersections’ radiuses
based on these features is also vital to intelligent transportation systems. The radiuses can
help us create a high-definition map [2,19].

Motivated by the preceding idea, we propose a novel method for road intersection
recognition via combining a classification model and clustering algorithm based on GPS
data. It includes two parts: one is center coordinate detection via combining classification
model and clustering algorithm, and another is radius computing by integrating Delaunay
triangulation with circle shape structure. Our contribution lies in three aspects:

(1) We propose a novel approach of road intersection detection via combining the Extreme
Deep Factorization Machine (xDeepFM) model and the Density-Based Spatial Clus-
tering of Applications with Noise algorithm (DBSCAN). Experiments show that our
approach reaches a higher precision compared with some state-of-the-art classification
models and clustering algorithms.

(2) A new method of radius computing is presented by integrating Delaunay triangula-
tion with circle shape structure. It is able to compute the intersections’ radiuses with
less error than Tang’s method [2], which is one of the typical methods in the field.

(3) Some spatial features in Section 3.1 are proposed to figure out, and are inputted
into xDeepFM together with geometric features. In addition to geometric features,
spatial features explored from GPS data and the interactions among all features are
also important to represent intersections’ semantics more accurately. Experiments
in Section 4.1 show that spatial features do better than geographic features, and the
interactions among all features by xDeepFM further improve the performance of road
intersection detection.

The paper is organized as follows: Section 2 reviews the related work on recognizing
road intersections from GPS trajectory data. Section 3 describes the proposed method to
recognize road intersections. Section 4 presents a set of experimental results and analyses.
Finally, the conclusions are discussed in the last section.

2. Related Work

Road intersection recognition is a hot spot at home and abroad. Road intersection
recognition involves detecting intersections and recognizing its scope. There are few works
on intersections’ scope recognition. The existing methods always focus on road intersection
detection. The state-of-the-art methods are divided into clustering-based methods and
classifying-based methods. Related works are collected in Table 1.
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Table 1. Comparisons of algorithms and the performance among the related works.

Literatures Cities Clustering
Algorithms

Classification
Models

Other
Algorithms

Precision
(%)

Recall
(%)

F-Measure
(%)

The Matching
Area’s Radius

(m)

[1] Wuhan PDC none PCA, morphology 92.23 77.26 84.08 none
[2] Wuhan LPC none none 93.1 96.1 none none
[10] Shenzhen none none Delaunay, thinning 87.93 75.76 82.0 40
[13] Beijing none KNN GeoHash 87.0 76.0 82.0 50
[16] Huaibei DBSCAN none none 91.6 none none none
[17] Chengdu mean shift none PCA 96.2 none none 50
[18] Suzhou mean shift none KDE 94.7 92.88 none none
[19] Cologne none DT none 93.2 92.8 none none

[20] Chicago none none Delaunay,
K-segment 93.6 65.67 77.19 none

[21] Chicago none none KDE 80.0 None none 50
[22] Chicago none none KDE, DP 85.0 None none 50

[23] Seattle none shape
descriptor none 76.0 None none none

The clustering-based methods generate a center coordinate of road intersections. The
center coordinate is represented by the form of “(longitude, latitude)”. Wu’s method [15]
computes the turning angle to acquire the turning points. It uses the points to extract the
new points nearer the center of road intersections, clusters the points, and generates the
center coordinate of road intersections. Tan’s method [16] defines a road intersection as
the area where cars left high dense turning trajectories. It clusters the turning curves into
the center coordinate of road intersections. It then uses the concentric circle algorithm
to compute the radius of road intersections. Finally, the radius of the road intersection
computes the driving direction of the road intersection. Li’s method [17] uses the Mean Shift
clustering algorithm to merge the road centerline. It combines the Principal Component
Analysis (PCA) algorithm and Deep First strategy to ensure the road shape and uses the line
intersection to detect road intersections. Tang’s method [2] extracts the turning point pairs
and clusters them based on angle and distance thresholds. For distinguishing different road
intersections, it clusters the turning points using a local-based point connection clustering
(LPC) algorithm. Wang’s method [18] computes high-density areas between neighbor
roads, using the Mean Shift clustering algorithm to cluster the high-density points. Deng’s
method [20] defines that the hot spot analysis can distinguish whether an area is a road
intersection. It clusters the hot spot area points using Delaunay triangulation, generating
the center coordinate of road intersections. Li’s method [1] is an integrating strategy. In
the vector space, it uses the Peak Density Clustering (PDC) algorithm to cluster the GPS
points. In the grid space, it adopts a mathematical morphology algorithm to detect road
intersections. Then, the vector and grid space results are merged, generating the center
coordinate of road intersections. Xie et al. [21] detect the junction of common sub-trajectory
points, evaluating the junctions using the Kernel Density Estimation (KDE) algorithm and
generating road intersection coordinates. Xie’s method [22] uses dynamic planning (DP) to
detect the common sub-trajectories of GPS data, linking the start point and the endpoint as
a junction and using the KDE algorithm to detect the junctions, computing the location of
road intersections.

The existing clustering-based methods always include two parts: one is selecting
turning points from GPS data and extracting their geometric features, another is clustering
them into center coordinates of road intersections. However, the accuracy of road intersec-
tion detection still has improvement room due to two drawbacks: (1) Besides geometric
features, spatial features explored from GPS data and the interactions among all features
are also important to represent intersections’ semantics more accurately, and (2) How to
capture the points around intersections for clustering has great impact on the accuracy of
intersection detection.

Another approach, the classifying-based methods, have recently caught some attention.
It concentrates on how to determine whether an area is a road intersection. Fathi et al. [23]
use many related map data to train the shape descriptor, determining where a sub-area is a
road intersection. Gao’s method [13] maps the area into a grid set, constructing training
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data using the set. The K-nearest neighbor (KNN) model is used to classify where a sub-area
is a road intersection. Wan et al. [19] split the trajectory into both turning direction and non-
turning direction, using Hausdorff distance to compute the similarity between trajectories.
The decision tree model is used to classify where a trajectory is a turning trajectory. The
location of road intersections is determined by clustering the turning trajectories. Chen’s
method [10] proposes an algorithm to compensate for the number of the turning point of
low-frequency GPS data, using Delaunay triangulation to cluster the turning points. The
clustering algorithm generates the area set, collecting the road intersection. Finally, the
paper uses the thinning algorithm to filter the wrong road intersections.

The clustering-based methods mainly extract the turning points from GPS data and
then cluster the turning points using different algorithms. The classifying-based methods
often use geometric similarity to detect road intersections. Both turning angles and ge-
ometric similarity are also geometric features capable of detecting road intersections [2].
However, the state-of-the-art methods neglect the deep layer features, and the radius of
road intersection needs to be computed. So, there are spaces to enhance the accuracy
of road intersection recognition. Therefore, the paper proposes a method combining a
classification model and a clustering algorithm to recognize road intersections. The method
raises the accuracy of the center coordinate of road intersections and computes the radius
of road intersections.

3. Material and Methods

The framework of the proposed method is shown in Figure 1. Firstly, we extract
geometric and spatial features of GPS points, and then merge them into a matrix. The
feature matrix is inputted into the xDeepFM model for training. The trained xDeepFM
model is applied for dividing GPS points into positive and negative points. The positive
points are around the intersections and the negative points are not. Secondly, the positive
points are clustered into the center coordinates of road intersections by the DBSCAN
algorithm. Finally, the radius of road intersections is computed by integrating Delaunay
triangulation with circle shape structure. Herein, we reckon the scope of an intersection as
a circle shape which can be determined by the center coordinate and the radius.
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3.1. Feature Extraction and the Classification Model

In addition to geometric features, spatial features explored from GPS data and the
interactions among all features are also important to represent intersections’ semantics more
accurately. Geometric features include turning angles, turning distances, and the Boolean
values of turning points. Spatial features are included in the number of turning points and
the sum of element values of eight neighborhoods. They are described as follows.

(1) Turning angles. The degree of changing direction is described as a turning angle.
When the direction changes, the vehicle’s turning angle is larger than that of going
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straight [2]. The larger the turning angle of a trajectory point, the more likely it is to
be at the intersection. In Figure 2, A, B, and C are the GPS points recorded in time
order. The point B’s turning angle θ, shown as Figure 2, is calculated according to
Equation (1).
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Figure 2. The point B’s turning angle θ. The points A, B, and C are GPS points recorded in time order.
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(2) Turning distances. The turning distance is the distance between the current point and
the link line of its adjacent points. In Figure 3, A, B, and C are the GPS points recorded
in time order. Figure 3a shows that h1 is point B’s turning distance. The value h1
is larger than h2 in Figure 3. It means that the turning distance generated when the
vehicle changes direction is larger than that generated when the vehicle goes straight.
The more the vehicle changes direction, the larger the turning distance. The larger the
turning distance, the more likely the vehicle will be located within an intersection.
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Figure 3. Turning distances in two situations: (a) Turning distance when a taxi changes direction;
(b) Turning distance when a taxi goes straight. The points A, B, and C are GPS points recorded in
time order.

(3) The Boolean values of turning points. In this paper, a point is a turning point if the
point’s turning angle is larger than 15. Otherwise, it is a non-turning point. Usually,
there are more turning points at intersections than at non-intersections [2]. Turning
points are more likely to be at intersections than non-turning points.

(4) The number of turning points. Wu et al. [15] believe that many turning points focus on
an intersection, and intersection and non-intersection can be distinguished according
to the density of turning points. Therefore, the number of turning points around a
trajectory point is regarded as one of the features of this paper. The more turning
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points around a trajectory point, the higher the possibility that the trajectory point is
located in an intersection.

(5) The sum of element values of eight neighborhoods. In the literature [1], trajectory
points are mapped to grids, and a method to determine intersection candidate points
is proposed, which improves the accuracy of intersection center location detection.
Therefore, this paper first uses a certain grid-scale to divide the experimental area.
Then this paper maps trajectory points to corresponding grids and sets the element
values of each grid. If there are points in the grid, the element value of the grid is 1;
otherwise, it is 0.

The method to calculate this feature is shown in Figure 4. Firstly, the grid where
each point is located is obtained. Secondly, the element values of the eight neighborhood
grids around these grids are obtained. Finally, the values of the elements in the eight
neighborhoods are added. The adding result is used as the value of the feature. The larger
the sum of element values of eight neighborhoods of a trajectory point, the more likely it is
to be at the intersection.
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Figure 4. Element values of eight neighborhoods.

We manually label 110 intersections in the experimental area of the OpenStreetMap,
and then each GPS point is labeled. We set a point’s label to 1 if the distance between the
point and the center of the nearest intersection is smaller than the threshold; otherwise, it
is 0. The points with label 1 are positive, and those with label 0 are negative. As shown
in Figure 5, the feature matrix is constructed by three factors: the geometric features, the
spatial features, and the labels.
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Figure 5. The feature matrix constructed by geometric features, spatial features, and labels.

The Extreme Deep Factorization Machine (xDeepFM) model [24] is one of the state-of-
the-art classification models. Its structure is shown in Figure 6, including a Factorization
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Machine (FM), a Deep Neural Network (DNN), and a Compressed Interaction Network
(CIN). The FM part is used to extract the low-order feature interaction. The DNN part is
used to capture the high-order and hidden feature interaction. The CIN part is used to dig
out the surface feature interaction. These three parts share the same input and output the
final classified result through normalization.
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3.2. Road Intersection Recognition

In this paper, road intersection recognition involves detecting the center coordinate of
the road intersections and computing the radius of the road intersection. We use clustering
algorithms to capture the center coordinates of road intersections. To obtain excellent
performance, we devise a comparison experiment in Section 4.3 among the K-means
algorithm, the agglomerative hierarchical algorithm (AHC), and the DBSCAN algorithm.
The result in Section 4.3 shows that the accuracy of the DBSCAN algorithm is higher than
the others. The proposed algorithm, named center coordinate detection algorithm via
combining classification model and clustering algorithm, is given as follows.

Algorithm 1: Center coordinate detection algorithm via combining classification model and clustering algorithm.

Step 1: Initialize all the points as unvisited.
Step 2: If all the points are visited, output cluster set C. Otherwise, randomly pick a point p from unvisited points and label
it as visited.
Step 3: p_neighbor is p’s neighbor points. Calculate p’s neighbor number p_num.
Step 4: If p_num is larger than the threshold N, build an array c and an array X. Collecting p into c and collecting
p_neighbor into X. Otherwise, labeling p as noise.
Step 5: If all the points in X are visited, go to Step 8. Otherwise, select an unvisited point in X and label it as visited.
Step 6: Count the number x_num of x’s neighbor points. x_neighbor represents x’s neighbor points.
Step 7: If x_num is bigger than N, collect x into c, collect x_neighbor into X, and go back to Step 5.

The radius of a road intersection is calculated after center coordinate detection. We
reckon the area of a road intersection as a circle, shown as the area I within the blue circle
in Figure 7. Its radius is the average of R1 and R2. Both R1 and R2 are manually labeled
according to remote sensing images for evaluation in Section 4.2. We propose to integrate
the Delaunay triangulation algorithm with the circle shape for figuring out intersections’
radiuses. The circle shape is the same as the literature [2]. For a cluster, some points may
be far from others which are named outlier points. Tang et al. [2] calculate the distance
between the cluster center and the farthest point as the intersection’s radius. This way
causes unacceptable errors easily because of the outlier points. To delete these outlier points,
we adopt the Delaunay triangulation algorithm [25,26] because it is helpful for capturing
proximity relationships among spatial points [10]. The method can be implemented by
Algorithm 1.
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In this paper, the proximity is the length of two near points. The method can be
implemented by Algorithm 2.

Algorithm 2: Radius computing algorithm by integrating Delaunay triangulation with circle shape structure

Step 1: For a cluster c in C, compute its central location and label it as intersection I.
Step 2: Use Delaunay triangulation in c and label the result as D.
Step 3: Compute the length of each edge as e, and collect them in an ascending array Y.
Step 4: Select the e at the top L% labeling as e_length, delete the edges that the length is bigger than e_length, and remove
the points linked to those edges.
Step 5: Compute the distance between the remaining points in c and intersection I, and use the max distance as the radius of
intersection I.

In Figure 8a, the red circle is the intersection radius before the outlier points are
eliminated. After removing the outlier points, the radius of the road intersection is the
green circle in Figure 8b.
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In our experiments, we use the GPS data of taxis trajectory within 2 km of Wenwu
Road in Chengdu. The area is about 2 km × 2 km. The data is provided by the DiDi chuxing
GAIA plan project, containing DRIVER ID, ORDER ID, LATITUDE, LONGITUDE, and
TIMESTAMP. The data were collected from 1–7 November 2016, including 535,875 orders
and 53,655,575 GPS trajectory points. In this dataset, a set of trajectory points with the same
ORDER ID represents a taxi trajectory. To calculate the features of the trajectory points, we
divide the trajectory points into different groups. A group represents a trajectory segment.
Trajectory points with the same ORDER ID are in the same group. Some trajectories
which only contain a few points are not conducive to feature extraction. So, we delete the
trajectories, which is less than 4 points.
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4. Results and Discussion

The experiment environment of the paper is equipped with a Core i5 CPU, 8GM RAM,
and Windows 10. Python is used to implement the proposed method. The paper uses
the packages containing Pytorch, Sklearn, and Folium to construct the tool to visualize
experiment results and qualifies the experimental accuracy.

4.1. Performance Evaluation of Road Intersection Detection

To estimate the performance of road intersection detection, we compare some typ-
ical classification models, such as the K-nearest neighbor (KNN) model [13], Logistic
regression (LR) model [27], the Factorization machine (FM) model [28], and the Deep
factorization machine (DeepFM) model [29]. In the experiments, we adopt DBSCAN [30]
as the clustering algorithm.

Figure 9 shows the road intersections detected by the proposed method in the experi-
mental area. The red circles are the intersections’ positions. Figure 9a–c give some examples
of the wrong detection types. The wrong type 1 (WT1) means the type of undetected
intersections. The reason is that GPS points around an intersection are too sparse to obtain
a cluster corresponding to the real intersection by DBSCAN. The wrong type 2 (WT2) is
the type of wrongly detected intersections. It always occurs when two intersections are so
close that they are clustered into a wrong intersection. Figure 9d-e give some examples of
the matched intersections, containing “X” shape and “T” shape intersections.
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We adopt OpenStreetMap as the referenced road network. The intersections labeled
by OpenStreetMap are regarded as ground truths. Herein, we set a matching area which is
referred to in the literatures [2,13] to judge whether the detected intersections are consistent
with OpenStreetMap. If the distance between a detected intersection and its corresponding
ground truth is shorter than the radius of the matching area, we reckon it as a right
hit of road intersection detection. The matching area’s radius is also called the distance
threshold. The detection performance is evaluated by the metrics such as Precision, Recall,
and F-measure. Table 2 gives the evaluation results.
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Table 2. The performance evaluation of different classification models.

The Matching Area’s Radius Evaluation
Metrics (%) KNN LR FM DeepFM Ours

5 m
Precision 17.5 20.6 68.6 63.1 66.0

Recall 16.4 19.1 63.6 59.1 61.8
F-measure 16.9 19.8 66 61 63.8

10 m
Precision 41.8 52.9 90.2 89.3 91.3

Recall 39.1 49.1 83.6 83.6 85.5
F-measure 40.1 50.9 86.8 86.1 88.3

20 m
Precision 55.3 70.6 95.1 96.1 97.1

Recall 51.8 65.5 88.2 90 90.9
F-measure 53.5 67.9 91.5 93 93.9

30 m
Precision 64.1 71.6 98.0 98.1 99.0

Recall 60.0 66.4 90.9 91.8 92.7
F-measure 62.0 68.9 94.3 94.8 95.8

We can draw two conclusions from Table 2: (1) The performance of different methods
rises with the increasing matching areas. (2) Our proposed method obviously outperforms
other methods. Especially when the radius of the matching area is 30 m, the metrics of
Precision, Recall, and F-measure respectively obtain 99%, 92.7%, and 95.8%. The KNN
model is uneasy to construct feature interactions. The LR model is linear, lacking feature
interaction. The FM model can build the second-order feature interaction, but it cannot
learn the high-order feature interaction. The DeepFM cannot learn the feature interaction
surface. The feature interaction it learned is uncontrollable [24]. The xDeepFM model
builds the low-order and high-order feature interaction and constructs the hidden and
surface feature interaction, making the accuracy of detecting the center coordinate splendid.

4.2. Performance Evaluation of Radius Computing

Figure 10 shows the radius of one of the road intersections. The blue point represents
the location of the road intersection of OpenStreetMap. The blue circle is the radius of the
road intersection of OpenStreetMap. The green points are the positive points. The red
point represents the detected center coordinate of a road intersection. The red circle is the
computed radius of a road intersection. The average error of the radius, avgratio, quantifies
the computed radius. The avgratio can be calculated in Equation (2).

avgratio = (
1
n ∑n

i=1

rdetecti
− rgti

rgti

)× 100% (2)

n is the number of detected road intersections. rdetect represents the computed radius of
road intersections. rgt is the manually tagged radius of road intersections. The lower the
avgratio value is, the lower the error of the calculated intersection radius is, and the more
accurate the calculation result of the intersection radius is. The computing radius and
comparison experiment results are shown in Figure 11.

In Figure 11a, Y-axis is the avgratio, and X-axis is the top L% edges in the array after
the process of Delaunay triangulation. In Delaunay triangulation, the points that link to
the edges of the lengthier than the top L% are deleted. The radius computed by Tang’s
method [2] is the max distance between the cluster center and the farthest point, the straight
gray line with 44.11% avgratio in Figure 11a. It can be learned from Figure 11a that the error
of the proposed method is smaller than Tang’s method [2]. When the value of L is 30%,
the avgratio is the smallest, getting 26.5%. The Delaunay triangulation algorithm is able to
eliminate the outliers inside intersections. So it makes the calculation of the intersection
radius more accurate, and experimental results prove it.
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4.3. Performance Comparison of Clustering Algorithms and Feature Matrixes

To select a suitable clustering algorithm for our approach, we devise a comparison
experiment among three typical clustering algorithms: the Agglomerative Hierarchical
Clustering algorithm (AHC), the K-means clustering algorithms (K-means), and the Density-
Based Spatial Clustering of Applications with Noise algorithm (DBSCAN). The comparison
results are shown in Figure 12. We observe that the DBSCAN algorithm outperforms other
cluster algorithms when the matching area is larger than 10 m. The AHC algorithm is
better than K-means. Its F-measure is 91.7% and the F-measure of the DBSCAN algorithm
reaches 95.8%.

Geometric and spatial features are respectively applied for road intersection detection.
Figure 13 shows their effects. It can be inferred from Figure 13 that spatial features perform
more effectively than geometric features, and the combination of both achieves the best
performance.
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4.4. Discussion

Road intersection detection based on GPS data can divide into three phrases: feature
point selection, feature extraction, and feature point clustering. Section 4.3 gives us three
observations: (1) DBSCAN outperforms K-means and AHC; (2) Spatial features do better
than geometric features, and (3) Combining geometric and spatial features can obtain
further improvement. Therefore, feature point selection is worthy of many focuses. The
existing methods always concentrate on the selection of turning points. Turning points are
around intersections, but they are a little far from center coordinates of intersections. Last
but not least, the number of turning points after selection is too little.

In this paper, we divide GPS points into two categories by xDeepFM: one class around
road intersections and another class on road segments. In addition to turning points, the
former class includes many GPS points near intersections’ centers which are recorded when
vehicles crossed intersections. When these points are put into the clustering algorithm, the
clustering centers are closer to intersections than many existing methods.

In the future, we will discuss the robustness of the proposed method which is relative
to the size of the detecting area and the numbers of GPS points or intersections. The
xDeepFM model is one of the state-of-the-art classification models. Comparison with other
classification models is also worthwhile to be conducted, especially the deep learning
models in the literatures [31–39]. Additionally, we will apply our recent progress [40,41]
for intersections’ scope recognition.

5. Conclusions

Road intersection recognition is essential for intelligent transportation systems. It is
still challenging to precisely detect an intersection and recognize its radius based on GPS
data. The traditional approach always takes three steps: Firstly, selecting turning points and
extracting their geometric features; next, clustering them as intersections’ centers. However,
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the performance is not good enough owing to the following aspects: (1) Some other spatial
features are ignored, such as those of intersections’ neighborhood; (2) Single algorithm is
used; (3) The scope of intersections is seldom considered.

Addressing these problems, we propose a novel approach for road intersection recog-
nition via combining classification model and clustering algorithm based on GPS data. It
includes two parts: one is center coordinate detection via combining classification model
and clustering algorithm; another is radius computing by integrating Delaunay triangula-
tion with circle shape structure. Furthermore, we devise a set of experiments to evaluate
our proposed methods on the GPS dataset of Chengdu provided by the DiDi chuxing
GAIA plan project. Compared with some state-of-the-art methods, our approach achieves
higher accuracy on road intersection recognition. The precision, recall, and f-measure
of our proposed center coordinates detection method are respectively 99.0%, 92.7%, and
95.8% when the matching area’s radius is 30 m. Moreover, the error of the proposed radius
calculation method is less than 26.5%.
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