Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (5)

Search Parameters:
Keywords = extended Aharonov-Bohm electrodynamics

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
10 pages, 252 KiB  
Article
Generalized Local Charge Conservation in Many-Body Quantum Mechanics
by F. Minotti and G. Modanese
Mathematics 2025, 13(5), 892; https://doi.org/10.3390/math13050892 - 6 Mar 2025
Viewed by 598
Abstract
In the framework of the quantum theory of many-particle systems, we study the compatibility of approximated non-equilibrium Green’s functions (NEGFs) and of approximated solutions of the Dyson equation with a modified continuity equation of the form [...] Read more.
In the framework of the quantum theory of many-particle systems, we study the compatibility of approximated non-equilibrium Green’s functions (NEGFs) and of approximated solutions of the Dyson equation with a modified continuity equation of the form tρ+(1γ)·J=0. A continuity equation of this kind allows the e.m. coupling of the system in the extended Aharonov–Bohm electrodynamics, but not in Maxwell electrodynamics. Focusing on the case of molecular junctions simulated numerically with the Density Functional Theory (DFT), we further discuss the re-definition of local current density proposed by Wang et al., which also turns out to be compatible with the extended Aharonov–Bohm electrodynamics. Full article
(This article belongs to the Special Issue Mathematics and Applications)
19 pages, 479 KiB  
Article
Electromagnetic Signatures of Possible Charge Anomalies in Tunneling
by Fernando Minotti and Giovanni Modanese
Quantum Rep. 2022, 4(3), 277-295; https://doi.org/10.3390/quantum4030020 - 11 Aug 2022
Cited by 3 | Viewed by 2101
Abstract
We reconsider some well-known tunneling processes from the point of view of Aharonov-Bohm electrodynamics, a unique extension of Maxwell’s theory which admits charge-current sources that are not locally conserved. In particular we are interested into tunneling phenomena having relatively long range (otherwise the [...] Read more.
We reconsider some well-known tunneling processes from the point of view of Aharonov-Bohm electrodynamics, a unique extension of Maxwell’s theory which admits charge-current sources that are not locally conserved. In particular we are interested into tunneling phenomena having relatively long range (otherwise the non-Maxwellian effects become irrelevant, especially at high frequency) and involving macroscopic wavefunctions and coherent matter, for which it makes sense to evaluate the classical e.m. field generated by the tunneling particles. For some condensed-matter systems, admitting discontinuities in the probability current is a possible way of formulating phenomenological models. In such cases, the Aharonov-Bohm theory offers a logically consistent approach and allows to derive observable consequences. Typical e.m. signatures of the failure of local conservation are at high frequency the generation of a longitudinal electric radiation field, and at low frequency a small effect of “missing” magnetic field. Possible causes of this failure are instant tunneling and phase slips in superconductors. For macroscopic quantum systems in which the phase-number uncertainty relation ΔNΔφ1 applies, the expectation value of the anomalous source I=tρ+·j has quantum fluctuations, thus becoming a random source of weak non-Maxwellian fields. Full article
Show Figures

Figure 1

21 pages, 368 KiB  
Article
Quantum Uncertainty and Energy Flux in Extended Electrodynamics
by Fernando Minotti and Giovanni Modanese
Quantum Rep. 2021, 3(4), 703-723; https://doi.org/10.3390/quantum3040044 - 18 Oct 2021
Cited by 5 | Viewed by 3170
Abstract
In quantum theory, for a system with macroscopic wavefunction, the charge density and current density are represented by non-commuting operators. It follows that the anomaly I=tρ+·j, being essentially a linear combination of these two [...] Read more.
In quantum theory, for a system with macroscopic wavefunction, the charge density and current density are represented by non-commuting operators. It follows that the anomaly I=tρ+·j, being essentially a linear combination of these two operators in the frequency-momentum domain, does not admit eigenstates and has a minimum uncertainty fixed by the Heisenberg relation ΔNΔϕ1, which involves the occupation number and the phase of the wavefunction. We give an estimate of the minimum uncertainty in the case of a tunnel Josephson junction made of Nb. Due to this violation of the local conservation of charge, for the evaluation of the e.m. field generated by the system it is necessary to use the extended Aharonov–Bohm electrodynamics. After recalling its field equations, we compute in general form the energy–momentum tensor and the radiation power flux generated by a localized oscillating source. The physical requirements that the total flux be positive, negative or zero yield some conditions on the dipole moment of the anomaly I. Full article
17 pages, 486 KiB  
Article
Are Current Discontinuities in Molecular Devices Experimentally Observable?
by F. Minotti and G. Modanese
Symmetry 2021, 13(4), 691; https://doi.org/10.3390/sym13040691 - 15 Apr 2021
Cited by 6 | Viewed by 2143
Abstract
An ongoing debate in the first-principles description of conduction in molecular devices concerns the correct definition of current in the presence of non-local potentials. If the physical current density [...] Read more.
An ongoing debate in the first-principles description of conduction in molecular devices concerns the correct definition of current in the presence of non-local potentials. If the physical current density j=(ie/2m)(Ψ*ΨΨΨ*) is not locally conserved but can be re-adjusted by a non-local term, which current should be regarded as real? Situations of this kind have been studied for example, for currents in saturated chains of alkanes, silanes and germanes, and in linear carbon wires. We prove that in any case the extended Maxwell equations by Aharonov-Bohm give the e.m. field generated by such currents without any ambiguity. In fact, the wave equations have the same source terms as in Maxwell theory, but the local non-conservation of charge leads to longitudinal radiative contributions of E, as well as to additional transverse radiative terms in both E and B. For an oscillating dipole we show that the radiated electrical field has a longitudinal component proportional to ωP^, where P^ is the anomalous moment I^(x)xd3x and I^ is the space-dependent part of the anomaly I=tρ+·j. For example, if a fraction η of a charge q oscillating over a distance 2a lacks a corresponding current, the predicted maximum longitudinal field (along the oscillation axis) is EL,max=2ηω2qa/(c2r). In the case of a stationary current in a molecular device, a failure of local current conservation causes a “missing field” effect that can be experimentally observable, especially if its entity depends on the total current; in this case one should observe at a fixed position changes in the ratio B/i in dependence on i, in contrast with the standard Maxwell equations. The missing field effect is confirmed by numerical solutions of the extended equations, which also show the spatial distribution of the non-local term in the current. Full article
(This article belongs to the Special Issue Symmetry, Extended Maxwell Equations and Non-local Wavefunctions)
Show Figures

Figure 1

14 pages, 306 KiB  
Article
High-Frequency Electromagnetic Emission from Non-Local Wavefunctions
by Giovanni Modanese
Appl. Sci. 2019, 9(10), 1982; https://doi.org/10.3390/app9101982 - 15 May 2019
Cited by 6 | Viewed by 2455
Abstract
In systems with non-local potentials or other kinds of non-locality, the Landauer-Büttiker formula of quantum transport leads to replacing the usual gauge-invariant current density J with a current J e x t which has a non-local part and coincides with the current of [...] Read more.
In systems with non-local potentials or other kinds of non-locality, the Landauer-Büttiker formula of quantum transport leads to replacing the usual gauge-invariant current density J with a current J e x t which has a non-local part and coincides with the current of the extended Aharonov-Bohm electrodynamics. It follows that the electromagnetic field generated by this current can have some peculiar properties and in particular the electric field of an oscillating dipole can have a long-range longitudinal component. The calculation is complex because it requires the evaluation of double-retarded integrals. We report the outcome of some numerical integrations with specific parameters for the source: dipole length ∼10−7 cm, frequency 10 GHz. The resulting longitudinal field E L turns out to be of the order of 10 2 to 10 3 times larger than the transverse component (only for the non-local part of the current). Possible applications concern the radiation field generated by Josephson tunnelling in thick superconductor-normal-superconductor (SNS) junctions in yttrium barium oxide (YBCO) and by current flow in molecular nanodevices. Full article
(This article belongs to the Special Issue Quantum Optics for Fundamental Quantum Mechanics)
Show Figures

Figure 1

Back to TopTop