Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (1)

Search Parameters:
Keywords = ethoxyethylidene protecting group

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 2948 KiB  
Article
Sensitive Immunofluorescent Detection of the PRAME Antigen Using a Practical Antibody Conjugation Approach
by Ksenia A. Sapozhnikova, Vsevolod A. Misyurin, Dmitry Y. Ryazantsev, Egor A. Kokin, Yulia P. Finashutina, Anastasiya V. Alexeeva, Igor A. Ivanov, Milita V. Kocharovskaya, Nataliya A. Tikhonova, Galina P. Popova, Vera A. Alferova, Alexey V. Ustinov, Vladimir A. Korshun and Vladimir A. Brylev
Int. J. Mol. Sci. 2021, 22(23), 12845; https://doi.org/10.3390/ijms222312845 - 27 Nov 2021
Cited by 5 | Viewed by 3497
Abstract
Bioconjugation of antibodies with various payloads has diverse applications across various fields, including drug delivery and targeted imaging techniques. Fluorescent immunoconjugates provide a promising tool for cancer diagnostics due to their high brightness, specificity, stability and target affinity. Fluorescent antibodies are widely used [...] Read more.
Bioconjugation of antibodies with various payloads has diverse applications across various fields, including drug delivery and targeted imaging techniques. Fluorescent immunoconjugates provide a promising tool for cancer diagnostics due to their high brightness, specificity, stability and target affinity. Fluorescent antibodies are widely used in flow cytometry for fast and sensitive identification and collection of cells expressing the target surface antigen. Nonetheless, current approaches to fluorescent labeling of antibodies most often use random modification, along with a few rather sophisticated site-specific techniques. The aim of our work was to develop a procedure for fluorescent labeling of immunoglobulin G via periodate oxidation of antibody glycans, followed by oxime ligation with fluorescent oxyamines. Here, we report a novel technique based on an in situ oxime ligation of ethoxyethylidene-protected aminooxy compounds with oxidized antibody glycans. The approach is suitable for easy modification of any immunoglobulin G, while ensuring that antigen-binding domains remain intact, thus revealing various possibilities for fluorescent probe design. The technique was used to label an antibody to PRAME, a cancer-testis protein overexpressed in a number of cancers. A 6H8 monoclonal antibody to the PRAME protein was directly modified with protected-oxyamine derivatives of fluorescein-type dyes (FAM, Alexa488, BDP-FL); the stoichiometry of the resulting conjugates was characterized spectroscopically. The immunofluorescent conjugates obtained were applied to the analysis of bone marrow samples from patients with oncohematological diseases and demonstrated high efficiency in flow cytometry quantification. The approach can be applied for the development of various immunofluorescent probes for detection of diagnostic and prognostic markers, which can be useful in anticancer therapy. Full article
(This article belongs to the Section Biochemistry)
Show Figures

Figure 1

Back to TopTop