Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = epoxy-bonded dowels

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 7142 KiB  
Article
Alternative Splicing Options for Ultra-High-Performance Concrete (UHPC) H-Piles
by Michael Odelola, Seyed Saman Khedmatgozar Dolati, Armin Mehrabi and David Garber
Buildings 2025, 15(3), 481; https://doi.org/10.3390/buildings15030481 - 4 Feb 2025
Viewed by 1055
Abstract
Pile splicing is generally considered in construction because of transportation limits, length requirements, construction means and methods, and strength capacity. A major challenge in the use of precast prestressed UHPC piles is the lack of efficient and effective splicing solutions. To address the [...] Read more.
Pile splicing is generally considered in construction because of transportation limits, length requirements, construction means and methods, and strength capacity. A major challenge in the use of precast prestressed UHPC piles is the lack of efficient and effective splicing solutions. To address the problem, this study evaluated different pile splicing methods for UHPC H-piles and their constructability. The analysis and design for strength capacity and detailing presented here are based on relevant established guidelines and design codes for UHPC. This study assessed two pile splicing methods: epoxy-bonded dowels and near-surface mounted bars (NSMBs). The analysis demonstrated that the epoxy-bonded dowel method provides a moment capacity that is 127% of the pile moment capacity in the strong direction and 139% of the pile moment capacity in the weak direction. In comparison, the NSMB method achieved 121% in the strong direction and 106% in the weak direction. Both methods developed the established strength capacity requirements. The constructability of both pile splicing options was evaluated to provide practical guidelines for their preparation in preplanned and unplanned situations. The results reported are for 18-inch UHPC H-piles; however, the construction and analytical approach applies to other pile sizes as well. The pile splicing options developed are recommended for further experimental investigations. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

16 pages, 6578 KiB  
Article
Behaviour Analysis of Beam-Type Timber and Timber-Concrete Composite Panels
by Elza Briuka, Dmitrijs Serdjuks, Pavel Akishin, Genadijs Sahmenko, Andrejs Podkoritovs and Raimonds Ozolins
Appl. Sci. 2024, 14(16), 7403; https://doi.org/10.3390/app14167403 - 22 Aug 2024
Cited by 1 | Viewed by 1093
Abstract
This study addresses the enhancement of material efficiency and reduction in brittleness in timber-to-concrete adhesive connections for beam-type timber and timber-concrete composite panels. The research explores the potential benefits of adding longitudinal timber ribs to cross-laminated timber (CLT) beam-type panels. Three groups of [...] Read more.
This study addresses the enhancement of material efficiency and reduction in brittleness in timber-to-concrete adhesive connections for beam-type timber and timber-concrete composite panels. The research explores the potential benefits of adding longitudinal timber ribs to cross-laminated timber (CLT) beam-type panels. Three groups of flexure-tested specimens were analysed as follows: (1) timber panels (1400 mm × 400 mm) with two 100 mm thick CLT panels and two 60 mm thick CLT panels reinforced with 150 × 80 mm timber ribs; (2) eight specimens (600 mm × 100 mm × 150 mm) with CLT members (600 mm × 100 mm × 100 mm) connected to a 50 mm concrete layer using granite chips and Sikadur-31 (AB) epoxy adhesive; (3) six CLT panels (1400 mm × 400 mm × 50 mm) bonded to a 50 mm concrete layer, with two panels containing polypropylene microfibres and two panels incorporating polyethene dowels for mechanical connection. Specimens were subjected to three-point bending tests and analysed using the transformed section method, γ-method, and finite element method with ANSYS 2023R2 software. Results indicated a 53% increase in load-carrying capacity for ribbed CLT panels with no additional material consumption, a 24.8–41.1% increase for CLT panels strengthened with a concrete layer, and improved ductility and prevention of disintegration in timber-concrete composites with polypropylene microfibres. Full article
(This article belongs to the Special Issue Latest Advances in Cement and Concrete Composites: 2nd Edition)
Show Figures

Figure 1

Back to TopTop