Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (5)

Search Parameters:
Keywords = epidermal and mesophyll flavonoids

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 21171 KB  
Article
Structural, Physiological, and Biochemical Responses of Oreorchis patens (Lindl.) Leaves Under Cold Stress
by Lan Yu, Na Cui, Yuyan Zhang, Yufeng Xu, Qing Miao, Xuhui Chen, Meini Shao and Bo Qu
Horticulturae 2025, 11(10), 1178; https://doi.org/10.3390/horticulturae11101178 - 2 Oct 2025
Viewed by 250
Abstract
Cold stress significantly impairs plant growth and development, making the study of cold resistance mechanisms a critical research focus. Oreorchis patens (Lindl.) exhibits strong cold hardiness, yet its molecular and physiological adaptations to cold stress remain unclear. This study utilized microscopy, physiological assays, [...] Read more.
Cold stress significantly impairs plant growth and development, making the study of cold resistance mechanisms a critical research focus. Oreorchis patens (Lindl.) exhibits strong cold hardiness, yet its molecular and physiological adaptations to cold stress remain unclear. This study utilized microscopy, physiological assays, and RNA sequencing to comprehensively investigate O. patens’s responses to cold stress. The results reveal that cold stress altered leaf anatomy, leading to irregular mesophyll cells, deformed chloroplasts, and variable epidermal thickness. Physiologically, SOD and POD activities peaked at 5 °C/−10 °C, while CAT activity declined; osmotic regulators (soluble sugars, proline) increased with decreasing temperatures. Compared to the reference plants (e.g., Erigeron canadensis, Allium fistulosum), O. patens exhibited lower SOD and POD but markedly higher CAT activities, alongside reduced MDA, soluble sugars, proline, and proteins, underscoring its distinctive tolerance strategy. Low temperature stress (≤10 °C/5 °C) significantly decreased the SPAD index; the net photosynthetic rate (Pn) initially increased and then approached zero within the temperature range from 30 °C/25 °C to 25 °C/20 °C; transpiration rate (Tr) and stomatal conductance (Gs) changed synchronously, accompanied by an increase in intercellular CO2 concentration (Ci). RNA sequencing identified 1139 cold-responsive differentially expressed genes, which were primarily enriched in flavonoid/lignin biosynthesis, jasmonic acid synthesis, and ROS scavenging pathways. qRT-PCR analysis revealed the role of secondary metabolites in O. patens response to cold stress. This study was the first to discuss the physiological, biochemical, and molecular regulatory mechanisms of O. patens resistance to cold stress, which provides foundational insights into its overwintering mechanisms and informs breeding strategies for cold-hardy horticultural crops in northern China. Full article
(This article belongs to the Special Issue New Insights into Protected Horticulture Stress)
Show Figures

Figure 1

27 pages, 3921 KB  
Article
Aspergillus nomiae and fumigatus Ameliorating the Hypoxic Stress Induced by Waterlogging through Ethylene Metabolism in Zea mays L.
by Khalil Ur Rahman, Kashmala Ali, Mamoona Rauf and Muhammad Arif
Microorganisms 2023, 11(8), 2025; https://doi.org/10.3390/microorganisms11082025 - 7 Aug 2023
Cited by 7 | Viewed by 2635
Abstract
Transient and prolonged waterlogging stress (WS) stimulates ethylene (ET) generation in plants, but their reprogramming is critical in determining the plants’ fate under WS, which can be combated by the application of symbiotically associated beneficial microbes that induce resistance to WS. The present [...] Read more.
Transient and prolonged waterlogging stress (WS) stimulates ethylene (ET) generation in plants, but their reprogramming is critical in determining the plants’ fate under WS, which can be combated by the application of symbiotically associated beneficial microbes that induce resistance to WS. The present research was rationalized to explore the potential of the newly isolated 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase-producing fungal endophytic consortium of Aspergillus nomiae (MA1) and Aspergillus fumigatus (MA4) on maize growth promotion under WS. MA1 and MA4 were isolated from the seeds of Moringa oleifera L., which ably produced a sufficient amount of IAA, proline, phenols, and flavonoids. MA1 and MA4 proficiently colonized the root zone of maize (Zea mays L.). The symbiotic association of MA1 and MA4 promoted the growth response of maize compared with the non-inoculated plants under WS stress. Moreover, MA1- and MA4-inoculated maize plants enhanced the production of total soluble protein, sugar, lipids, phenolics, and flavonoids, with a reduction in proline content and H2O2 production. MA1- and MA4-inoculated maize plants showed an increase in the DPPH activity and antioxidant enzyme activities of CAT and POD, along with an increased level of hormonal content (GA3 and IAA) and decreased ABA and ACC contents. Optimal stomatal activity in leaf tissue and adventitious root formation at the root/stem junction was increased in MA1- and MA4-inoculated maize plants, with reduced lysigenous aerenchyma formation, ratio of cortex-to-stele, water-filled cells, and cell gaps within roots; increased tight and round cells; and intact cortical cells without damage. MA1 and MA4 induced a reduction in deformed mesophyll cells, and deteriorated epidermal and vascular bundle cells, as well as swollen metaxylem, phloem, pith, and cortical area, in maize plants under WS compared with control. Moreover, the transcript abundance of ethylene-responsive gene ZmEREB180, responsible for the induction of the WS tolerance in maize, showed optimally reduced expression sufficient for induction in WS tolerance, in MA1- and MA4-inoculated maize plants under WS compared with the non-inoculated control. The existing research supported the use of MA1 and MA4 isolates for establishing the bipartite mutualistic symbiosis in maize to assuage the adverse effects of WS by optimizing ethylene production. Full article
Show Figures

Figure 1

18 pages, 3756 KB  
Project Report
Acclimation and Compensating Metabolite Responses to UV-B Radiation in Natural and Transgenic Populus spp. Defective in Lignin Biosynthesis
by Tiffany M. Wong, Joe H. Sullivan and Edward Eisenstein
Metabolites 2022, 12(8), 767; https://doi.org/10.3390/metabo12080767 - 20 Aug 2022
Cited by 10 | Viewed by 2178
Abstract
Plants have evolved to protect leaf mesophyll tissue from damage caused by UV-B radiation by producing an array of UV-absorbing secondary metabolites. Flavonoids (phenolic glycosides) and sinapate esters (hydroxycinnamates) have been implicated as UV-B protective compounds because of the accumulation in the leaf [...] Read more.
Plants have evolved to protect leaf mesophyll tissue from damage caused by UV-B radiation by producing an array of UV-absorbing secondary metabolites. Flavonoids (phenolic glycosides) and sinapate esters (hydroxycinnamates) have been implicated as UV-B protective compounds because of the accumulation in the leaf epidermis and the strong absorption in the wavelengths corresponding to UV. Environmental adaptations by plants also generate a suite of responses for protection against damage caused by UV-B radiation, with plants from high elevations or low latitudes generally displaying greater adaptation or tolerance to UV-B radiation. In an effort to explore the relationships between plant lignin levels and composition, the origin of growth elevation, and the hierarchical synthesis of UV-screening compounds, a collection of natural variants as well as transgenic Populus spp. were examined for sensitivity or acclimation to UV-B radiation under greenhouse and laboratory conditions. Noninvasive, ecophysiological measurements using epidermal transmittance and chlorophyll fluorescence as well as metabolite measurements using UPLC-MS generally revealed that the synthesis of anthocyanins, flavonoids, and lignin precursors are increased in Populus upon moderate to high UV-B treatment. However, poplar plants with genetic modifications that affect lignin biosynthesis, or natural variants with altered lignin levels and compositions, displayed complex changes in phenylpropanoid metabolites. A balance between elevated metabolic precursors to protective phenylpropanoids and increased biosynthesis of these anthocyanins, flavonoids, and lignin is proposed to play a role in the acclimation of Populus to UV-B radiation and may provide a useful tool in engineering plants as improved bioenergy feedstocks. Full article
(This article belongs to the Section Metabolomic Profiling Technology)
Show Figures

Figure 1

18 pages, 9739 KB  
Article
Photoprotective Role of Photosynthetic and Non-Photosynthetic Pigments in Phillyrea latifolia: Is Their “Antioxidant” Function Prominent in Leaves Exposed to Severe Summer Drought?
by Antonella Gori, Cecilia Brunetti, Luana Beatriz dos Santos Nascimento, Giovanni Marino, Lucia Guidi, Francesco Ferrini, Mauro Centritto, Alessio Fini and Massimiliano Tattini
Int. J. Mol. Sci. 2021, 22(15), 8303; https://doi.org/10.3390/ijms22158303 - 2 Aug 2021
Cited by 16 | Viewed by 4612
Abstract
Carotenoids and phenylpropanoids play a dual role of limiting and countering photooxidative stress. We hypothesize that their “antioxidant” function is prominent in plants exposed to summer drought, when climatic conditions exacerbate the light stress. To test this, we conducted a field study on [...] Read more.
Carotenoids and phenylpropanoids play a dual role of limiting and countering photooxidative stress. We hypothesize that their “antioxidant” function is prominent in plants exposed to summer drought, when climatic conditions exacerbate the light stress. To test this, we conducted a field study on Phillyrea latifolia, a Mediterranean evergreen shrub, carrying out daily physiological and biochemical analyses in spring and summer. We also investigated the functional role of the major phenylpropanoids in different leaf tissues. Summer leaves underwent the most severe drought stress concomitantly with a reduction in radiation use efficiency upon being exposed to intense photooxidative stress, particularly during the central hours of the day. In parallel, a significant daily variation in both carotenoids and phenylpropanoids was observed. Our data suggest that the morning-to-midday increase in zeaxanthin derived from the hydroxylation of ß-carotene to sustain non-photochemical quenching and limit lipid peroxidation in thylakoid membranes. We observed substantial spring-to-summer and morning-to-midday increases in quercetin and luteolin derivatives, mostly in the leaf mesophyll. These findings highlight their importance as antioxidants, countering the drought-induced photooxidative stress. We concluded that seasonal and daily changes in photosynthetic and non-photosynthetic pigments may allow P. latifolia leaves to avoid irreversible photodamage and to cope successfully with the Mediterranean harsh climate. Full article
(This article belongs to the Special Issue Flavonoids)
Show Figures

Figure 1

15 pages, 3983 KB  
Article
Acclimation Changes of Flavonoids in Needles of Conifers during Heat and Drought Stress 2015
by Walter Feucht, Markus Schmid and Dieter Treutter
Climate 2016, 4(3), 35; https://doi.org/10.3390/cli4030035 - 5 Jul 2016
Cited by 5 | Viewed by 5095
Abstract
The long-term harsh climate conditions in 2015 distorted already from June up to November in all study trees of Tsuga and Taxus the intracellular organization of the needles. Intimately involved in these repressive processes were the flavanols, a small subgroup of the flavonoids. [...] Read more.
The long-term harsh climate conditions in 2015 distorted already from June up to November in all study trees of Tsuga and Taxus the intracellular organization of the needles. Intimately involved in these repressive processes were the flavanols, a small subgroup of the flavonoids. They were not only deposited in vacuoles of conifer needles but also in the nuclei and chromosomes. Among the many flavonoids the small group of catechin derivatives and polymers named flavanols can exclusively be stained blue with DMACA (dimethylaminocinnamaldehyde). From mid-July onward, the vacuolar flavanols of the epidermal cell layers were gradually diminished as evidenced by decreasing blue staining of nuclei and vacuoles. Subsequently, in August also the large spongy mesophyll cells showed the flavanols decreasing progressively. Apparently, the antioxidant flavanols operate as oxygen radical scavengers. (ROS) were used up during the harsh environmental stress conditions. Both, Tsuga and Taxus reacted in this way. However, it is quite surprising that in all study trees the palisade cells did not contain such vacuolar flavanols. Only these cells were in June the first to show a loss of chlorophyll from chloroplasts as well as an efflux of flavanols from the nuclei. Conversely, from September onward another group of phenols, the yellow-staining flavanols were newly formed in the palisade cells and later on also in the mesophyll cells. Obviously, they were assembled finally to stabilize finally the fragile cell sites. Summing up, the present study shows by cytological studies that the climatic conditions in 2015 produced the worst disturbance of subcellular structures observed since 2000 when our studies on nuclear phenols in needles of conifers were initiated. Full article
(This article belongs to the Special Issue Climate Extremes: Observations and Impacts)
Show Figures

Figure 1

Back to TopTop