Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (1)

Search Parameters:
Keywords = enyzme-inhibition activity

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 1152 KiB  
Article
New Biological and Chemical Insights into Optimization of Chamomile Extracts by Using Artificial Neural Network (ANN) Model
by Aleksandra Cvetanović Kljakić, Miloš Radosavljević, Gokhan Zengin, Linlin Yan, Uroš Gašić, Predrag Kojić, Aleksandra Torbica, Miona Belović and Zoran Zeković
Plants 2023, 12(6), 1211; https://doi.org/10.3390/plants12061211 - 7 Mar 2023
Cited by 13 | Viewed by 2718
Abstract
Chamomile is one of the most consumed medicinal plants worldwide. Various chamomile preparations are widely used in various branches of both traditional and modern pharmacy. However, in order to obtain an extract with a high content of the desired components, it is necessary [...] Read more.
Chamomile is one of the most consumed medicinal plants worldwide. Various chamomile preparations are widely used in various branches of both traditional and modern pharmacy. However, in order to obtain an extract with a high content of the desired components, it is necessary to optimize key extraction parameters. In the present study, optimization of process parameters was performed using the artificial neural networks (ANN) model using a solid-to-solvent ratio, microwave power and time as inputs, while the outputs were the yield of the total phenolic compounds (TPC). Optimized extraction conditions were as follows: a solid-to-solvent ratio of 1:80, microwave power of 400 W, extraction time of 30 min. ANN predicted the content of the total phenolic compounds, which was later experimentally confirmed. The extract obtained under optimal conditions was characterized by rich composition and high biological activity. Additionally, chamomile extract showed promising properties as growth media for probiotics. The study could make a valuable scientific contribution to the application of modern statistical designs and modelling to improve extraction techniques. Full article
Show Figures

Figure 1

Back to TopTop