Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (5)

Search Parameters:
Keywords = endometrial-myometrial interface disruption

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
11 pages, 1073 KB  
Article
Eutopic and Ectopic Endometrial Interleukin-17 and Interleukin-17 Receptor Expression at the Endometrial—Myometrial Interface in Women with Adenomyosis: Possible Pathophysiology Implications
by Le-Tien Hsu, Pei-Chen Lu, Yi-Wen Wang, Hsien-Ming Wu, I-Ju Chen and Hong-Yuan Huang
Int. J. Mol. Sci. 2024, 25(20), 11155; https://doi.org/10.3390/ijms252011155 - 17 Oct 2024
Cited by 1 | Viewed by 2092
Abstract
Adenomyosis involves the infiltration of endometrial glands and stroma deep into the uterine tissue, causing disruption to the endometrial–myometrial interface (EMI). The role of interleukin-17 (IL-17) has been extensively studied in endometriosis, but its involvement in adenomyosis remains unclear. This study aimed to [...] Read more.
Adenomyosis involves the infiltration of endometrial glands and stroma deep into the uterine tissue, causing disruption to the endometrial–myometrial interface (EMI). The role of interleukin-17 (IL-17) has been extensively studied in endometriosis, but its involvement in adenomyosis remains unclear. This study aimed to investigate the expression of IL-17 in eutopic and ectopic endometrium (adenomyosis) of individuals with adenomyosis at the level of EMI. Paired tissues of eutopic endometrium and adenomyoma were collected from 16 premenopausal women undergoing hysterectomy due to adenomyosis. The IL-17 system was demonstrated in paired tissue samples at the level of EMI by the immunochemistry study. Gene expression levels of IL-17A and IL-17 receptor (IL-17R) were assessed through quantitative real-time reverse transcription polymerase chain reaction (RT-PCR). Comparative gene transcript amounts were calculated using the delta-delta Ct method. By immunohistochemical staining, CD4, IL-17A, and IL-17R proteins were detected in both eutopic endometrium and adenomyosis at the level of EMI. IL-17A and IL-17R were expressed mainly in the glandular cells, and the expression of both IL-17A and IL-17R was found to be stronger in adenomyosis than in endometrium. 3-Diaminobenzidine (DAB) staining revealed greater IL-17A expression in adenomyosis compared to eutopic endometrium. Quantitative RT-PCR showed 7.28-fold change of IL-17A and 1.99-fold change of IL-17R, and the fold change level of both IL-17A and IL-17R is significantly higher in adenomyosis (IL-17A: p = 0.047, IL-17R: p = 0.027) versus eutopic endometrium. We found significantly higher IL-17 levels in adenomyosis compared to eutopic endometrium at the level of EMI. The results showed that the IL-17 system may play a role in adenomyosis. Full article
(This article belongs to the Special Issue Endometriosis: From Molecular Basis to Therapy)
Show Figures

Figure 1

12 pages, 8176 KB  
Article
Altered Expression of Interleukin-18 System mRNA at the Level of Endometrial Myometrial Interface in Women with Adenomyosis
by Liang-Hsuan Chen, She-Hung Chan, Chin-Jung Li, Hsien-Ming Wu and Hong-Yuan Huang
Curr. Issues Mol. Biol. 2022, 44(11), 5550-5561; https://doi.org/10.3390/cimb44110376 - 9 Nov 2022
Cited by 11 | Viewed by 3002
Abstract
Adenomyosis is a uterine pathology characterized by a deep invasion of endometrial glands and stroma, disrupting the endometrial–myometrial interface (EMI). Interleukin-18 (IL-18) system is a dominant cytokine involved in the menstrual cycle of human endometrium. IL-18 may play a defensive role against maternal [...] Read more.
Adenomyosis is a uterine pathology characterized by a deep invasion of endometrial glands and stroma, disrupting the endometrial–myometrial interface (EMI). Interleukin-18 (IL-18) system is a dominant cytokine involved in the menstrual cycle of human endometrium. IL-18 may play a defensive role against maternal immune response in the uterine cavity. The present study was designed to determine IL-18-mediated immune response at the level of EMI. We uncovered that mRNA of IL-18 system, including IL-18, IL-18 receptor (IL-18R), and its antagonist, IL-18 binding protein (IL-18BP), expressed in eutopic, ectopic endometrium, and corresponding myometrium in patients with adenomyosis. IL-18 system was demonstrated in paired tissue samples by immunochemistry and immunofluorescence study. According to RT-PCR with CT value quantification and 2−∆∆Ct method, a significant down-regulation of IL-18BP in corresponding myometrium in comparison to eutopic endometrium (p < 0.05) indicates that the IL-18 system acts as a local immune modulator at the level of EMI and regulating cytokine networks in the pathogenesis of adenomyosis. Furthermore, an increased IL-18 antagonist to agonist ratio was noted in ectopic endometrium compared with corresponding myometrium. We suggest that altered IL-18 system expression contributes to immunological dysfunction and junctional zone disturbance in women with adenomyosis. Full article
(This article belongs to the Special Issue Molecular Research in Reproductive Biology)
Show Figures

Figure 1

21 pages, 5819 KB  
Article
Perioperative Suppression of Schwann Cell Dedifferentiation Reduces the Risk of Adenomyosis Resulting from Endometrial–Myometrial Interface Disruption in Mice
by Xi Wang, Xishi Liu and Sun-Wei Guo
Biomedicines 2022, 10(6), 1218; https://doi.org/10.3390/biomedicines10061218 - 24 May 2022
Cited by 9 | Viewed by 3058
Abstract
We have recently demonstrated that endometrial–myometrial interface (EMI) disruption (EMID) can cause adenomyosis in mice, providing experimental evidence for the well-documented epidemiological finding that iatrogenic uterine procedures increase the risk of adenomyosis. To further elucidate its underlying mechanisms, we designed this study to [...] Read more.
We have recently demonstrated that endometrial–myometrial interface (EMI) disruption (EMID) can cause adenomyosis in mice, providing experimental evidence for the well-documented epidemiological finding that iatrogenic uterine procedures increase the risk of adenomyosis. To further elucidate its underlying mechanisms, we designed this study to test the hypothesis that Schwann cells (SCs) dedifferentiating after EMID facilitate the genesis of adenomyosis, but the suppression of SC dedifferentiation perioperatively reduces the risk. We treated mice perioperatively with either mitogen-activated protein kinase kinase (MEK)/extracellular-signal regulated protein kinase (ERK) or c-Jun N-terminal kinase (JNK) inhibitors or a vehicle 4 h before and 24 h, 48 h and 72 h after the EMID procedure. We found that EMID resulted in progressive SCs dedifferentiation, concomitant with an increased abundance of epithelial cells in the myometrium and a subsequent epithelial–mesenchymal transition (EMT). This EMID-induced change was abrogated significantly with perioperative administration of JNK or MEK/ERK inhibitors. Consistently, perioperative administration of a JNK or a MEK/ERK inhibitor reduced the incidence by nearly 33.5% and 14.3%, respectively, in conjunction with reduced myometrial infiltration of adenomyosis and alleviation of adenomyosis-associated hyperalgesia. Both treatments significantly decelerated the establishment of adenomyosis and progression of EMT, fibroblast-to-myofibroblast trans-differentiation and fibrogenesis in adenomyotic lesions. Thus, we provide the first piece of evidence strongly implicating the involvement of SCs in the pathogenesis of adenomyosis induced by EMID. Full article
(This article belongs to the Special Issue Animal Models of Endometriosis, from the Bench to the Clinic)
Show Figures

Figure 1

28 pages, 1994 KB  
Review
Unveiling the Pathogenesis of Adenomyosis through Animal Models
by Xi Wang, Giuseppe Benagiano, Xishi Liu and Sun-Wei Guo
J. Clin. Med. 2022, 11(6), 1744; https://doi.org/10.3390/jcm11061744 - 21 Mar 2022
Cited by 13 | Viewed by 5323
Abstract
Background: Adenomyosis is a common gynecological disorder traditionally viewed as “elusive”. Several excellent review papers have been published fairly recently on its pathogenesis, and several theories have been proposed. However, the falsifiability, explanatory power, and predictivity of these theories are often overlooked. Since [...] Read more.
Background: Adenomyosis is a common gynecological disorder traditionally viewed as “elusive”. Several excellent review papers have been published fairly recently on its pathogenesis, and several theories have been proposed. However, the falsifiability, explanatory power, and predictivity of these theories are often overlooked. Since adenomyosis can occur spontaneously in rodents and many other species, the animal models may help us unveil the pathogenesis of adenomyosis. This review critically tallies experimentally induced models published so far, with a particular focus on their relevance to epidemiological findings, their possible mechanisms of action, and their explanatory and predictive power. Methods: PubMed was exhaustively searched using the phrase “adenomyosis and animal model”, “adenomyosis and experimental model”, “adenomyosis and mouse”, and “adenomyosis and rat”, and the resultant papers were retrieved, carefully read, and the resultant information distilled. All the retrieved papers were then reviewed in a narrative manner. Results: Among all published animal models of adenomyosis, the mouse model of adenomyosis induced by endometrial–myometrial interface disruption (EMID) seems to satisfy the requirements of falsifiability and has the predictive capability and also Hill’s causality criteria. Other theories only partially satisfy Hill’s criteria of causality. In particular, animal models of adenomyosis induced by hyperestrogenism, hyperprolactinemia, or long-term exposure to progestogens without much epidemiological documentation and adenomyosis is usually not the exclusive uterine pathology consequent to those induction procedures. Regardless, uterine disruption appears to be a necessary but not sufficient condition for causing adenomyosis. Conclusions: EMID is, however, unlikely the sole cause for adenomyosis. Future studies, including animal studies, are warranted to understand how and why in utero and/or prenatal exposure to elevated levels of estrogen or estrogenic compounds increases the risk of developing adenomyosis in adulthood, to elucidate whether prolactin plays any role in its pathogenesis, and to identify sufficient condition(s) that cause adenomyosis. Full article
(This article belongs to the Special Issue Cracking the Enigma of Adenomyosis)
Show Figures

Figure 1

15 pages, 1307 KB  
Review
The Pathogenesis of Adenomyosis vis-à-vis Endometriosis
by Sun-Wei Guo
J. Clin. Med. 2020, 9(2), 485; https://doi.org/10.3390/jcm9020485 - 10 Feb 2020
Cited by 128 | Viewed by 15383
Abstract
Adenomyosis is used to be called endometriosis interna, and deep endometriosis is now called adenomyosis externa. Thus, there is a question as to whether adenomyosis is simply endometriosis of the uterus, either from the perspective of pathogenesis or pathophysiology. In this manuscript, a [...] Read more.
Adenomyosis is used to be called endometriosis interna, and deep endometriosis is now called adenomyosis externa. Thus, there is a question as to whether adenomyosis is simply endometriosis of the uterus, either from the perspective of pathogenesis or pathophysiology. In this manuscript, a comprehensive review was performed with a literature search using PubMed for all publications in English, related to adenomyosis and endometriosis, from inception to June 20, 2019. In addition, two prevailing theories, i.e., invagination—based on tissue injury and repair (TIAR) hypothesis—and metaplasia, on adenomyosis pathogenesis, are briefly overviewed and then critically scrutinized. Both theories have apparent limitations, i.e., difficulty in falsification, explaining existing data, and making useful predictions. Based on the current understanding of wound healing, a new hypothesis, called endometrial-myometrial interface disruption (EMID), is proposed to account for adenomyosis resulting from iatrogenic trauma to EMI. The EMID hypothesis not only highlights the more salient feature, i.e., hypoxia, at the wounding site, but also incorporates epithelial mesenchymal transition, recruitment of bone-marrow-derived stem cells, and enhanced survival and dissemination of endometrial cells dispersed and displaced due to iatrogenic procedures. More importantly, the EMID hypothesis predicts that the risk of adenomyosis can be reduced if certain perioperative interventions are performed. Consequently, from a pathogenic standpoint, adenomyosis is not simply endometriosis of the uterus, and, as such, may call for interventional procedures that are somewhat different from those for endometriosis to achieve the best results. Full article
(This article belongs to the Special Issue Diagnosis and Management of Endometriosis and Uterine Fibroids)
Show Figures

Figure 1

Back to TopTop