Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = elongation of long-chain fatty acids family member 6 (ELOVL6)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 8430 KiB  
Article
Gut Dysbiosis Shaped by Cocoa Butter-Based Sucrose-Free HFD Leads to Steatohepatitis, and Insulin Resistance in Mice
by Shihab Kochumon, Md. Zubbair Malik, Sardar Sindhu, Hossein Arefanian, Texy Jacob, Fatemah Bahman, Rasheeba Nizam, Amal Hasan, Reeby Thomas, Fatema Al-Rashed, Steve Shenouda, Ajit Wilson, Shaima Albeloushi, Nourah Almansour, Ghadeer Alhamar, Ashraf Al Madhoun, Fawaz Alzaid, Thangavel Alphonse Thanaraj, Heikki A. Koistinen, Jaakko Tuomilehto, Fahd Al-Mulla and Rasheed Ahmadadd Show full author list remove Hide full author list
Nutrients 2024, 16(12), 1929; https://doi.org/10.3390/nu16121929 - 18 Jun 2024
Cited by 5 | Viewed by 3198
Abstract
Background: High-fat diets cause gut dysbiosis and promote triglyceride accumulation, obesity, gut permeability changes, inflammation, and insulin resistance. Both cocoa butter and fish oil are considered to be a part of healthy diets. However, their differential effects on gut microbiome perturbations in mice [...] Read more.
Background: High-fat diets cause gut dysbiosis and promote triglyceride accumulation, obesity, gut permeability changes, inflammation, and insulin resistance. Both cocoa butter and fish oil are considered to be a part of healthy diets. However, their differential effects on gut microbiome perturbations in mice fed high concentrations of these fats, in the absence of sucrose, remains to be elucidated. The aim of the study was to test whether the sucrose-free cocoa butter-based high-fat diet (C-HFD) feeding in mice leads to gut dysbiosis that associates with a pathologic phenotype marked by hepatic steatosis, low-grade inflammation, perturbed glucose homeostasis, and insulin resistance, compared with control mice fed the fish oil based high-fat diet (F-HFD). Results: C57BL/6 mice (5–6 mice/group) were fed two types of high fat diets (C-HFD and F-HFD) for 24 weeks. No significant difference was found in the liver weight or total body weight between the two groups. The 16S rRNA sequencing of gut bacterial samples displayed gut dysbiosis in C-HFD group, with differentially-altered microbial diversity or relative abundances. Bacteroidetes, Firmicutes, and Proteobacteria were highly abundant in C-HFD group, while the Verrucomicrobia, Saccharibacteria (TM7), Actinobacteria, and Tenericutes were more abundant in F-HFD group. Other taxa in C-HFD group included the Bacteroides, Odoribacter, Sutterella, Firmicutes bacterium (AF12), Anaeroplasma, Roseburia, and Parabacteroides distasonis. An increased Firmicutes/Bacteroidetes (F/B) ratio in C-HFD group, compared with F-HFD group, indicated the gut dysbiosis. These gut bacterial changes in C-HFD group had predicted associations with fatty liver disease and with lipogenic, inflammatory, glucose metabolic, and insulin signaling pathways. Consistent with its microbiome shift, the C-HFD group showed hepatic inflammation and steatosis, high fasting blood glucose, insulin resistance, increased hepatic de novo lipogenesis (Acetyl CoA carboxylases 1 (Acaca), Fatty acid synthase (Fasn), Stearoyl-CoA desaturase-1 (Scd1), Elongation of long-chain fatty acids family member 6 (Elovl6), Peroxisome proliferator-activated receptor-gamma (Pparg) and cholesterol synthesis (β-(hydroxy β-methylglutaryl-CoA reductase (Hmgcr). Non-significant differences were observed regarding fatty acid uptake (Cluster of differentiation 36 (CD36), Fatty acid binding protein-1 (Fabp1) and efflux (ATP-binding cassette G1 (Abcg1), Microsomal TG transfer protein (Mttp) in C-HFD group, compared with F-HFD group. The C-HFD group also displayed increased gene expression of inflammatory markers including Tumor necrosis factor alpha (Tnfa), C-C motif chemokine ligand 2 (Ccl2), and Interleukin-12 (Il12), as well as a tendency for liver fibrosis. Conclusion: These findings suggest that the sucrose-free C-HFD feeding in mice induces gut dysbiosis which associates with liver inflammation, steatosis, glucose intolerance and insulin resistance. Full article
(This article belongs to the Special Issue The Effects of Dietary Fat on Gut Microbiota and Metabolic Health)
Show Figures

Figure 1

18 pages, 3657 KiB  
Article
A Specific microRNA Targets an Elongase of Very Long Chain Fatty Acids to Regulate Fatty Acid Composition and Mitochondrial Morphology of Skeletal Muscle Cells
by Han Wang, Moran Hu, Zhonghao Shen, Xiaolong Zhou, Songbai Yang, Ke He, Xiangchen Li, Feifei Yan and Ayong Zhao
Animals 2022, 12(17), 2274; https://doi.org/10.3390/ani12172274 - 2 Sep 2022
Cited by 6 | Viewed by 1910
Abstract
Recently, miR-22 has been suggested to be an important microRNA (miRNA) affecting meat quality. Studies have shown that muscle fatty acid composition and mitochondrial function are closely related to meat quality. The regulatory mechanism of miR-22 on skeletal muscle fatty acid composition and [...] Read more.
Recently, miR-22 has been suggested to be an important microRNA (miRNA) affecting meat quality. Studies have shown that muscle fatty acid composition and mitochondrial function are closely related to meat quality. The regulatory mechanism of miR-22 on skeletal muscle fatty acid composition and mitochondrial function is not well characterized. Therefore, we aimed to explore the effects of miR-22 on fatty acid composition and mitochondrial function in C2C12 cells. Here, it demonstrate that elevated expression of miR-22 significantly repressed fatty acid elongation and mitochondrial morphology in C2C12 myoblasts, while the knockdown of miR-22 showed opposite results. Furthermore, miR-22 targets the elongase of very long chain fatty acids 6 (ELOVL6) and represses its expression in muscle cells. Knockdown of ELOVL6 mimicked the effect of miR-22 on fatty acid composition and mitochondrial function, while overexpression of ELOVL6 restored the effects of miR-22. These findings indicate that miR-22 downregulates the elongation of fatty acids and mitochondrial morphology by inhibiting ELOVL6 expression in muscle cells, which may provide some useful information for controlling muscle lipid accumulation and mitochondrial function in livestock in the future. Full article
(This article belongs to the Section Animal Products)
Show Figures

Graphical abstract

Back to TopTop