Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (3)

Search Parameters:
Keywords = electronic-hydraulic analogy

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 6881 KiB  
Article
Hydraulic Function Analysis of Conifer Xylem Based on a Model Incorporating Tracheids, Bordered Pits, and Cross-Field Pits
by Wen Qu, Chunmei Yang, Jiawei Zhang, Yan Ma, Xinchi Tian, Shuai Zhao and Wenji Yu
Forests 2022, 13(2), 171; https://doi.org/10.3390/f13020171 - 22 Jan 2022
Cited by 4 | Viewed by 4557
Abstract
Wood has a highly complex and anisotropic structure. Its xylem characteristics are key in determining the hydraulic properties of plants to transport water efficiently and safely, as well as the permeability in the process of wood impregnation modification. Previous studies on the relationship [...] Read more.
Wood has a highly complex and anisotropic structure. Its xylem characteristics are key in determining the hydraulic properties of plants to transport water efficiently and safely, as well as the permeability in the process of wood impregnation modification. Previous studies on the relationship between the xylem structure and hydraulic conductivity of conifer have mainly focused on tracheids and bordered pits, with only a few focusing on the conduction model of cross-field pits which connect tracheids and rays. This study takes the xylem structure of conifer as an example, drawing an analogy between water flow under tension and electric current, and extends the model to the tissue scale, including cross-field pits by establishing isometric scaling. The structure parameters were collected by scanning electron microscopy and transmission electron microscopy. The improved model can quantify the important hydraulic functional characteristics of xylem only by measuring the more easily obtained tracheid section size. Then, this model was applied to quantify the relationship between the xylem anatomical structure and hydraulic properties in the pine (Pinus sylvestris L. var. mongholica Litv.) and the spruce (Picea koraiensis Nakai), and also to evaluate the effects of the number and size of cross-field pits on xylem conduction. The results showed that the growth ring conduction value of the pine was more than twice that of the spruce for the two tree species with similar growth widths in this study. The tracheid wall resistance of the pine reflected the result of the interaction of the size and number of cross-field pits, in comparison, the wall resistance of the spruce was more sensitive to the number of cross-field pits. Finally, the calculation output of the new model was cross-validated with the literature, which verified the accuracy and effectiveness of the model. This study provides an effective and complete solution for xylem conductivity measurement and the study of wood ecophysiological diversity and processing. Full article
(This article belongs to the Special Issue Physical Properties of Wood)
Show Figures

Figure 1

14 pages, 14010 KiB  
Article
Effect of Slit Channel Width of a Shim Embedded in Slot-Die Head on High-Density Stripe Coating for OLEDs
by Dongkyun Shin, Jinyoung Lee and Jongwoon Park
Coatings 2020, 10(8), 772; https://doi.org/10.3390/coatings10080772 - 8 Aug 2020
Cited by 8 | Viewed by 5945
Abstract
With an attempt to achieve high-density fine organic stripes for potential applications in solution-processable organic light-emitting diodes (OLEDs), we have performed slot-die coatings using a shim with slit channels in various shapes (rectangular-shaped narrow, rectangular-shaped wide, and reversely tapered channels) in the presence [...] Read more.
With an attempt to achieve high-density fine organic stripes for potential applications in solution-processable organic light-emitting diodes (OLEDs), we have performed slot-die coatings using a shim with slit channels in various shapes (rectangular-shaped narrow, rectangular-shaped wide, and reversely tapered channels) in the presence of narrow µ-tips. Based on hydraulic-electric circuit analogy, we have analyzed the fluid dynamics of an aqueous poly (3,4-ethylenedioxythiophene): poly (4-styrenesulfonate) (PEDOT:PSS). It is observed that the coating speed can be increased and the stripe width can be reduced using a shim with rectangular-shaped wide slit channels. It is attributed that the hydraulic resistance is decreased and thus more fluid can reach a substrate through µ-tips. This behavior is consistent with the simulation result of the equivalent electrical circuit with a DC voltage source representing a pressure source. Using the shim with 150-µm-wide slit channels, we have successfully fabricated 200 PEDOT:PSS stripes within the effective coating width (150 mm) and 160 OLED stripes (34 stripes per inch) with the luminance of 325 cd/m2 at 5 V. Full article
Show Figures

Figure 1

13 pages, 2321 KiB  
Technical Note
Air Puff System Fundamentals for Reproducible Eyeblink Conditioning Research
by Frederick Reitz
Methods Protoc. 2019, 2(1), 14; https://doi.org/10.3390/mps2010014 - 2 Feb 2019
Cited by 5 | Viewed by 4524
Abstract
Air puff systems are at once trivially straightforward and dauntingly complex. On the one hand, they are little but a pressure source, valve, and tube connected together. On the other, the air passing through them is a compressible medium, expanding approximately adiabatically while [...] Read more.
Air puff systems are at once trivially straightforward and dauntingly complex. On the one hand, they are little but a pressure source, valve, and tube connected together. On the other, the air passing through them is a compressible medium, expanding approximately adiabatically while travelling at high velocity through a compliant tube, and exiting as a turbulent jet with velocity peak and profile varying non-linearly in its near-field. This complexity puts precise mathematical prediction of puff properties out of reach of most labs. There are, however, a number of phenomena fundamental to air puff system design that are worth understanding to a first order of approximation, or at least qualitatively. Using a simplified, “electronic–hydraulic analogy” model, this paper discusses these phenomena in just enough depth for the reader to confidently specify parts for an air puff delivery system, to measure its key parameters, and/or to describe a given system unambiguously in publications, thus maximizing reproducibility. Full article
Show Figures

Figure 1

Back to TopTop