Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = electrodialysis of titanium sulfate

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 3647 KiB  
Article
Mineral Layer Fillers for the Production of Functional Materials
by Lidia G. Gerasimova, Marina V. Maslova and Ekaterina S. Shchukina
Materials 2021, 14(12), 3369; https://doi.org/10.3390/ma14123369 - 18 Jun 2021
Cited by 5 | Viewed by 2177
Abstract
An original method based on the use of technogenic waste from the processing of mineral-layered materials, in particular phlogopite for obtaining highly efficient functional compositions of the “mica-TiO2”, has been developed. The composition core is a nanosized mica flake coated with [...] Read more.
An original method based on the use of technogenic waste from the processing of mineral-layered materials, in particular phlogopite for obtaining highly efficient functional compositions of the “mica-TiO2”, has been developed. The composition core is a nanosized mica flake coated with mesoporous titanium dioxide of an anatase or rutile structure. Energy-saving and environmentally friendly technological methods are based on the splitting of the mica followed by heterogeneous electrohydrolysis of a mixture of titanium (IV) sulfate solution and flake particles. No destruction of the mica surface, which provided the obtained uniform coatings, has been observed. Such coatings are used in photocatalysis processes and possess a self-cleaning capability. Core–shell compositions are more economically attractive compared with titanium dioxide, in particular TiO2 grade P25 (Degusse). The core of the transparent flake and the shell of the rutile titanium dioxide endows the final product with a pearlescent optical effect. This type of material is widely used in the manufacturing of paints and varnishes, printing inks, cosmetics, etc. The use of technogenic waste could significantly reduce the cost of the final product, which would ensure its widespread use in various industries. Full article
Show Figures

Figure 1

13 pages, 4190 KiB  
Article
Physical and Electrochemical Performances of Cold Sprayed Pb Electrodes
by Guosheng Huang, Yaowei Zhuang and Wei Fu
Coatings 2019, 9(3), 174; https://doi.org/10.3390/coatings9030174 - 6 Mar 2019
Viewed by 3675
Abstract
Titanium-based PbO2 electrodes are widely used for chemical industries, such as electrodialysis, electrolysis, and electrodepositing, to improve the mechanical and life cycle properties of Pb metal electrodes. However, PbO2 electrodes are usually electrodeposited onto rigid metals due to its soft characteristic, [...] Read more.
Titanium-based PbO2 electrodes are widely used for chemical industries, such as electrodialysis, electrolysis, and electrodepositing, to improve the mechanical and life cycle properties of Pb metal electrodes. However, PbO2 electrodes are usually electrodeposited onto rigid metals due to its soft characteristic, which results in severe passivation problems requiring thin thickness and high porosity. It is of great importance to develop a rigid Pb metal electrode system since thermal spraying and welding methods fail to manufacture such a promising electrode. In the present work, the cold spraying method was used to deposit a pure Pb metal coating with thickness of above 500 μm on Q235 steel substrate. The coating has good physical performances, the porosity is less than 1%, and the bonding strength ranges from 6.25 to 7.75 MPa. The cross-sectional morphology suggests that no through-thickness pores exist in the coating. The oxygen evolution potential is larger than 1.5 V vs. SCE, which is similar to the potential of the titanium-based PbO2 electrode. Dynamic polarization curves and cyclic voltammetry curves of coated sample in sodium sulfate solution indicate that cold sprayed Pb coating is a good electrode for electrochemical reduction reactions. All our results mean that cold spraying is capable of manufacturing electrode materials for electrochemical industries. Full article
(This article belongs to the Special Issue Cold Spraying: Recent Trends and Future Views)
Show Figures

Figure 1

Back to TopTop