Sign in to use this feature.

Years

Between: -

Subjects

Journals

Article Types

Countries / Regions

Search Results (4)

Search Parameters:
Keywords = electric drive-reconstructed onboard charger

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 9408 KB  
Article
General Fault-Tolerant Operation of Electric-Drive-Reconstructed Onboard Charger Incorporating Asymmetrical Six-Phase Drive for EVs
by Xing Liu, Xunhui Cheng, Hui Yang and Yuhao Zhang
World Electr. Veh. J. 2024, 15(11), 488; https://doi.org/10.3390/wevj15110488 - 27 Oct 2024
Viewed by 995
Abstract
In this paper, the fault-tolerant operation of an electric-drive-reconstructed onboard charger (EDROC) designed on the basis of an asymmetrical six-phase permanent magnet synchronous machine (ASPMSM) drive is studied and discussed for cases where an open-phase fault (OPF) occurs in any phase. The fault-tolerant [...] Read more.
In this paper, the fault-tolerant operation of an electric-drive-reconstructed onboard charger (EDROC) designed on the basis of an asymmetrical six-phase permanent magnet synchronous machine (ASPMSM) drive is studied and discussed for cases where an open-phase fault (OPF) occurs in any phase. The fault-tolerant operation is realized by rearranging the stator currents, aiming to eliminate the rotating field caused by the OPFs and to ensure the balance of grid currents. Each faulty case is discussed, and the rearranging scheme of stator currents is deduced. Meanwhile, a controller shared for both healthy and faulty cases is designed. Finally, some experiments are conducted to verify the theoretical analyses. Full article
Show Figures

Figure 1

14 pages, 4694 KB  
Article
Two-Stage Multiple-Vector Model Predictive Control for Multiple-Phase Electric-Drive-Reconstructed Power Management for Solar-Powered Vehicles
by Qingyun Zhu, Zhen Zhang and Zhihao Zhu
World Electr. Veh. J. 2024, 15(10), 466; https://doi.org/10.3390/wevj15100466 - 14 Oct 2024
Cited by 1 | Viewed by 1576
Abstract
Electric-drive-reconstructed onboard chargers (EDROCs), also known as electric-drive-reconstructed power management systems, are a promising alternative to conventional onboard chargers due to their characteristics of low cost and high power density. The model predictive control offers a fast dynamic response, simple implementation, and the [...] Read more.
Electric-drive-reconstructed onboard chargers (EDROCs), also known as electric-drive-reconstructed power management systems, are a promising alternative to conventional onboard chargers due to their characteristics of low cost and high power density. The model predictive control offers a fast dynamic response, simple implementation, and the ability to control multiple targets simultaneously. In this paper, a two-stage multi-vector model predictive current control (MPCC) of a six-phase EDROC for solar-powered electric vehicles (EVs) is proposed. Firstly, the topology for the EDROC incorporating a six-phase symmetrical permanent magnet synchronous machine (PMSM) is introduced, and the operation principles of the DC charge mode, the drive mode, and, especially, the in-motion charge mode are analyzed in detail. After that, a two-stage multi-vector MPCC method is proposed by using the multi-vector MPC technique and designing a two-stage MPC structure to eliminate the regulation of the weighting factor of the MPC. Finally, the effectiveness of the proposed method is verified on a self-designed 2 kW EDROC platform. Full article
Show Figures

Figure 1

15 pages, 5452 KB  
Article
Suppression of Initial Charging Torque for Electric Drive-Reconfigured On-Board Charger
by Yang Xiao, Kangwei Wang, Zhi Geng, Kai Ni, Mingdi Fan and Yong Yang
World Electr. Veh. J. 2024, 15(5), 207; https://doi.org/10.3390/wevj15050207 - 9 May 2024
Cited by 1 | Viewed by 2193
Abstract
This paper presents a new electric drive-reconfigured on-board charger and initial electromagnetic torque suppression method. This proposed reconfigured on-board charger does not need many components added to the original electric drive system: only a connector is needed, which is easy to add. Specifically, [...] Read more.
This paper presents a new electric drive-reconfigured on-board charger and initial electromagnetic torque suppression method. This proposed reconfigured on-board charger does not need many components added to the original electric drive system: only a connector is needed, which is easy to add. Specifically, the inverter for propulsion is reconfigured as a buck chopper and a conduction path to match the reconfigured windings. Two of the machine phase windings serve as inductors, while the third phase winding is reutilized as a common-mode inductor. In addition, the initial charging torque is generated at the outset of the charging process, which may cause an instant shock or even rotational movement. In order to prevent vehicle movement, the reason for the charging torque and suppression method were analyzed. Further, predictive control of the model based on mutual inductance analysis was adopted, where the charging torque was directly used as a control object in the cost function. Finally, experimental performances were applied to verify the proposed reconfigured on-board charger under constant current and constant voltage charging. Full article
Show Figures

Figure 1

14 pages, 5738 KB  
Article
An Effective Charging Torque Elimination Method for Dual-Channel Electric-Drive-Reconstructed Onboard Chargers
by Xunhui Cheng, Feng Yu and Linhao Qiu
World Electr. Veh. J. 2024, 15(5), 205; https://doi.org/10.3390/wevj15050205 - 8 May 2024
Cited by 4 | Viewed by 1914
Abstract
The idea of electric-drive-reconstructed onboard charger (EDROC) systems, along with the concept of dual-channel charging, offers a novel design, thought to enhance the integration and fault tolerance of the charging system of electric vehicles (EVs). This article investigates a dual-channel EDROC incorporating an [...] Read more.
The idea of electric-drive-reconstructed onboard charger (EDROC) systems, along with the concept of dual-channel charging, offers a novel design, thought to enhance the integration and fault tolerance of the charging system of electric vehicles (EVs). This article investigates a dual-channel EDROC incorporating an asymmetrical six-phase permanent magnet synchronous machine (ASPMSM). A unique operation mode, called the unbalanced charging voltage operation mode, exists in this topology, in case the voltages of the two batteries are unequal. This unbalance results in different winding currents following through two channels, leading to an undesired charging torque in the machine. To ensure the safety of the system, an effective charging torque elimination method, based on dual-channel winding current balance, is proposed, which achieves a dot-shaped current path of torque generation-associated subspace (i.e., αβ subspace) by balancing the dual-channel charging power. Eventually, a controller is designed for the system and a prototype is created, to validate the effectiveness of the proposed method. Full article
Show Figures

Figure 1

Back to TopTop