Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = dual catalytic hairpin assembly process

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 3914 KiB  
Article
A Dual-Cycle Isothermal Amplification Method for microRNA Detection: Combination of a Duplex-Specific Nuclease Enzyme-Driven DNA Walker with Improved Catalytic Hairpin Assembly
by Yu Han, Shuang Han, Ting Ren, Liu Han, Xiangyu Ma, Lijing Huang and Xin Sun
Int. J. Mol. Sci. 2025, 26(2), 689; https://doi.org/10.3390/ijms26020689 - 15 Jan 2025
Cited by 2 | Viewed by 1323
Abstract
The association between microRNAs and various diseases, especially cancer, has been established in recent years, indicating that miRNAs can potentially serve as biomarkers for these diseases. Determining miRNA concentrations in biological samples is crucial for disease diagnosis. Nevertheless, the stem-loop reverse transcription quantitative [...] Read more.
The association between microRNAs and various diseases, especially cancer, has been established in recent years, indicating that miRNAs can potentially serve as biomarkers for these diseases. Determining miRNA concentrations in biological samples is crucial for disease diagnosis. Nevertheless, the stem-loop reverse transcription quantitative PCR method, the gold standard for detecting miRNA, has great challenges in terms of high costs and enzyme limitations when applied to clinical biological samples. In this study, an isothermal signal amplification method based on a duplex-specific nuclease (DSN) enzyme-driven DNA walker and an improved catalytic hairpin assembly (CHA) was designed for miRNA detection. First, biotin–triethylene glycol-modified trigger-releasable DNA probes were conjugated to the streptavidin-coated magnetic beads for recognizing the target miRNA. The DSN enzyme specifically hydrolyzes DNA strands when the DNA probe hybridizes with the targeted miRNA. This recycling process converts the input miRNA into short trigger fragments (catalysts). Finally, three hairpins of improved CHA are driven by this catalyst, resulting in the three-armed CHA products and a fluorescence signal as the output. This dual-cycle biosensor shows a good linear relationship in the detection of miR-21 and miR-141 over the final concentration range of 250 fM to 50 nM, presenting an excellent limit of detection (2.95 amol). This system was used to detect miR-21 and miR-141 in MCF-7 and 22RV1 cells, as well as in 1% human serum. This system can be used to evaluate the expression levels of miRNAs in different biological matrices for the clinical diagnosis and prognosis of different cancers. Full article
(This article belongs to the Special Issue RNA in Human Diseases: Challenges and Opportunities)
Show Figures

Graphical abstract

10 pages, 1690 KiB  
Article
Dual Catalytic Hairpin Assembly-Based Automatic Molecule Machine for Amplified Detection of Auxin Response Factor-Targeted MicroRNA-160
by Lei Wang, Xing Dai, Yujian Feng, Qiyang Zhao, Lin Liu, Chang Xue, Langtao Xiao and Ruozhong Wang
Molecules 2021, 26(21), 6432; https://doi.org/10.3390/molecules26216432 - 25 Oct 2021
Cited by 3 | Viewed by 3307
Abstract
MicroRNA160 plays a crucial role in plant development by negatively regulating the auxin response factors (ARFs). In this manuscript, we design an automatic molecule machine (AMM) based on the dual catalytic hairpin assembly (D-CHA) strategy for the signal amplification detection of miRNA160. The [...] Read more.
MicroRNA160 plays a crucial role in plant development by negatively regulating the auxin response factors (ARFs). In this manuscript, we design an automatic molecule machine (AMM) based on the dual catalytic hairpin assembly (D-CHA) strategy for the signal amplification detection of miRNA160. The detection system contains four hairpin-shaped DNA probes (HP1, HP2, HP3, and HP4). For HP1, the loop is designed to be complementary to miRNA160. A fragment of DNA with the same sequences as miRNA160 is separated into two pieces that are connected at the 3′ end of HP2 and 5′ end of HP3, respectively. In the presence of the target, four HPs are successively dissolved by the first catalytic hairpin assembly (CHA1), forming a four-way DNA junction (F-DJ) that enables the rearrangement of separated DNA fragments at the end of HP2 and HP3 and serving as an integrated target analogue for initiating the second CHA reaction, generating an enhanced fluorescence signal. Assay experiments demonstrate that D-CHA has a better performance compared with traditional CHA, achieving the detection limit as low as 10 pM for miRNA160 as deduced from its corresponding DNA surrogates. Moreover, non-target miRNAs, as well as single-base mutation targets, can be detected. Overall, the D-CHA strategy provides a competitive method for plant miRNAs detection. Full article
(This article belongs to the Special Issue Application of Nucleic Acid Probe in Analysis and Detection)
Show Figures

Figure 1

Back to TopTop