Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (12)

Search Parameters:
Keywords = drift potential (DP)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 3235 KiB  
Article
Research on the Characteristics of the Aeolian Environment in the Coastal Sandy Land of Mulan Bay, Hainan Island
by Zhong Shuai, Qu Jianjun, Zhao Zhizhong and Qiu Penghua
J. Mar. Sci. Eng. 2025, 13(8), 1506; https://doi.org/10.3390/jmse13081506 - 5 Aug 2025
Abstract
The coastal sandy land in northeast Hainan Province is typical for this land type, also exhibiting strong sand activity. This study is based on wind speed, wind direction, and sediment transport data obtained at a field meteorological station using an omnidirectional sand accumulation [...] Read more.
The coastal sandy land in northeast Hainan Province is typical for this land type, also exhibiting strong sand activity. This study is based on wind speed, wind direction, and sediment transport data obtained at a field meteorological station using an omnidirectional sand accumulation instrument from 2020 to 2024, studying the coastal aeolian environment and sediment transport distribution characteristics in the region. Its findings provide a theoretical basis for comprehensively analyzing the evolution of coastal aeolian landforms and the evaluation and control of coastal aeolian hazards. The research results show the following: (1) The annual average threshold wind velocity for sand movement in the study area is 6.84 m/s, and the wind speed frequency (frequency of occurrence) is 51.54%, dominated by easterly (NE, ENE) and southerly (S, SSE) winds. (2) The drift potential (DP) refers to the potential amount of sediment transported within a certain time and spatial range, and the annual drift potential (DP) and resultant drift potential (RDP) of Mulan Bay from 2020 to 2024 were 550.82 VU and 326.88 VU, respectively, indicating a high-energy wind environment. The yearly directional wind variability index (RDP/DP) was 0.59, classified as a medium ratio and indicating blunt bimodal wind conditions. The yearly resultant drift direction (RDD) was 249.45°, corresponding to a WSW direction, indicating that the sand in Mulan Bay is generally transported in the southwest direction. (3) When the measured data extracted from the sand accumulation instrument in the study area from 2020 to 2024 were used for statistical analysis, the results showed that the total sediment transport rate (the annual sediment transport of the observation section) in the study area was 110.87 kg/m·a, with the maximum sediment transport rate in the NE direction being 29.26 kg/m·a. These results suggest that when sand fixation systems are constructed for relevant infrastructure in the region, the construction direction of protective forests and other engineering measures should be perpendicular to the net direction of sand transport. Full article
(This article belongs to the Section Coastal Engineering)
Show Figures

Figure 1

14 pages, 3647 KiB  
Article
The Characteristics of the Aeolian Environment in the Coastal Sandy Land of Boao Jade Belt Beach, Hainan Island
by Shuai Zhong, Jianjun Qu, Zhizhong Zhao and Penghua Qiu
Atmosphere 2025, 16(7), 845; https://doi.org/10.3390/atmos16070845 - 11 Jul 2025
Viewed by 202
Abstract
Boao Jade Beach, on the east coast of Hainan Island, is a typical sandy beach and is one of the areas where typhoons frequently land in Hainan. This study examined wind speed, wind direction, and sediment transport data obtained from field meteorological stations [...] Read more.
Boao Jade Beach, on the east coast of Hainan Island, is a typical sandy beach and is one of the areas where typhoons frequently land in Hainan. This study examined wind speed, wind direction, and sediment transport data obtained from field meteorological stations and omnidirectional sand accumulation instruments from 2020 to 2024 to study the coastal aeolian environment and sediment transport distribution characteristics in the region. The findings provide a theoretical basis for comprehensive analyses of the evolution of coastal aeolian landforms and the evaluation and control of coastal aeolian hazards. The research results showed the following: (1) The annual average threshold wind velocity for sand movement in the study area was 6.13 m/s, and the wind speed frequency was 20.97%, mainly dominated by easterly winds (NNE, NE) and southerly winds (S). (2) The annual drift potential (DP) and resultant drift potential (RDP) of Boao Jade Belt Beach from 2020 to 2024 were 125.99 VU and 29.59 VU, respectively, indicating a low-energy wind environment. The yearly index of directional wind variability (RDP/DP) was 0.23, which is classified as a small ratio and indicates blunt bimodal wind conditions. The yearly resultant drift direction (RDD) was 329.41°, corresponding to the NNW direction, indicating that the sand on Boao Jade Belt Beach is generally transported in the southwest direction. (3) When the measured data from the sand accumulation instrument in the study area from 2020 to 2024 were used for a statistical analysis, the results showed that the total sediment transport rate in the study area was 39.97 kg/m·a, with the maximum sediment transport rate in the S direction being 17.74 kg/m·a. These results suggest that, when sand fixation systems are constructed for relevant infrastructure in the region, the direction of protective forests and other engineering measures should be perpendicular to the net direction of sand transport. Full article
(This article belongs to the Section Meteorology)
Show Figures

Figure 1

15 pages, 3877 KiB  
Article
Erosive Wind Characteristics and Aeolian Sediment Transport and Dune Formation in Makran Region of Baluchistan, Iran
by Hamidreza Abbasi, Azadeh Gohardoust, Fazeh Mohammadpour, Mohammad Khosroshahi, Michael Groll and Christian Opp
Atmosphere 2025, 16(6), 650; https://doi.org/10.3390/atmos16060650 - 27 May 2025
Viewed by 455
Abstract
Understanding aeolian sediment transport and wind erosion enhances our knowledge of desert dune formation and sand migration. The Makran region of southern Sistan and Baluchistan is prone to wind-driven erosion alongside frequent sand and dust storms (SDSs). Hourly wind data from two meteorological [...] Read more.
Understanding aeolian sediment transport and wind erosion enhances our knowledge of desert dune formation and sand migration. The Makran region of southern Sistan and Baluchistan is prone to wind-driven erosion alongside frequent sand and dust storms (SDSs). Hourly wind data from two meteorological stations spanning 1994–2020 were analyzed to study erosive winds and sand transport. Wind energy analysis using drift potential (DP) indicated low energy (DP < 200 in vector unit) and minimal spatial variation across the Makran dune fields. The effective winds transporting sand particles were towards the east from November to May, and in the northwestern direction from June to October. The DP showed a gradual decline in the study area from 1990 to 2022, with no significant temporal trends. The sand dune morphology analysis indicates that bimodal wind regimes primarily form linear dunes and sand sheets, while crescentic, transverse, and topographic dunes are also present. Full article
Show Figures

Figure 1

11 pages, 4995 KiB  
Article
Numerical Investigation on Electrothermal Performance of AlGaN/GaN HEMTs with Nanocrystalline Diamond/SiNx Trench Dual-Passivation Layers
by Peiran Wang, Chenkai Deng, Chuying Tang, Xinyi Tang, Wenchuan Tao, Ziyang Wang, Nick Tao, Qi Wang, Qing Wang and Hongyu Yu
Nanomaterials 2025, 15(8), 574; https://doi.org/10.3390/nano15080574 - 10 Apr 2025
Viewed by 419
Abstract
In this work, AlGaN/GaN high-electron-mobility transistors (HEMTs) with a nanocrystalline diamond (NCD)/SiNx trench dual-passivated (TDP) structure were promoted, which demonstrated superior performance with a higher saturation output current (Idss) of 1.266 A/mm, a higher maximum transconductance (Gmmax [...] Read more.
In this work, AlGaN/GaN high-electron-mobility transistors (HEMTs) with a nanocrystalline diamond (NCD)/SiNx trench dual-passivated (TDP) structure were promoted, which demonstrated superior performance with a higher saturation output current (Idss) of 1.266 A/mm, a higher maximum transconductance (Gmmax) of 0.329 S/mm, and a lower resistance (Ron) of 2.64 Ω·mm. Thermal simulations revealed a peak junction temperature of 386.36 K for TDP devices under Vds/Vgs = 30 V/0 V, representing 13.7% and 4.5% reductions versus SiNx single-passivated (SP, 447.59 K) and dual-passivated (DP, 404.58 K) devices, respectively. The results suggested that compared to conventional SP and DP devices, TDP devices can effectively suppress the self-heating effect, thereby improving output characteristics while maintaining superior RF small-signal characteristics. Moreover, the results of numerical simulations indicated that the enhanced electrothermal performance of TDP devices was predominantly attributed to the mitigation of temperature-induced degradation in electron mobility and drift velocity, thereby preserving their high power and high frequency capabilities. These results highlighted the significant potential of TDP devices to improve the performance of GaN HEMTs in high-power and high-frequency applications. Full article
(This article belongs to the Section Nanoelectronics, Nanosensors and Devices)
Show Figures

Figure 1

16 pages, 7250 KiB  
Article
Spatial-Temporal Assessment of Dust Events and Trend Analysis of Sand Drift Potential in Northeastern Iran, Gonabad
by Mohammad Reza Rahdari, Rasoul Kharazmi, Jesús Rodrigo-Comino and Andrés Rodríguez-Seijo
Land 2024, 13(11), 1906; https://doi.org/10.3390/land13111906 - 14 Nov 2024
Cited by 3 | Viewed by 1632
Abstract
In recent years, northeastern Iran, particularly Khorasan Razavi province, has experienced wind erosion and dust storms, although large-scale studies are limited. To assess wind patterns, sand drift, and dust events, hourly wind data were analyzed using Fryberger’s method, along with trend analysis through [...] Read more.
In recent years, northeastern Iran, particularly Khorasan Razavi province, has experienced wind erosion and dust storms, although large-scale studies are limited. To assess wind patterns, sand drift, and dust events, hourly wind data were analyzed using Fryberger’s method, along with trend analysis through the Mann–Kendall and Sen’s slope tests. Additionally, MODIS satellite data and Google Earth Engine helped identify event frequency and spatial patterns. The results show that east (12%) and southeast winds (9.6%) are the most frequent, with an average annual wind speed of 4.39 knots. Sand drift potential (DP = 96, RDP = 21.6) indicates sand movement from southeast to northwest, with a multi-directional wind system (unidirectional index of 0.22). The results of the AOD index show that the amount of dust in the north and northwest part is more than other locations, and more than 500 events with dust has been registered over the last two decades. These findings suggest that policymakers should monitor these trends to mitigate the environmental and infrastructural damage caused by blowing sand. Full article
(This article belongs to the Special Issue The Impact of Extreme Weather on Land Degradation and Conservation)
Show Figures

Figure 1

19 pages, 5547 KiB  
Article
Spatial Characteristics of Aeolian Sand Transport Affected by Surface Vegetation along the Oshang Railway
by Ning Huang, Yanhong Song, Xuanmin Li, Bin Han, Lihang Xu and Jie Zhang
Sustainability 2024, 16(10), 3940; https://doi.org/10.3390/su16103940 - 8 May 2024
Cited by 2 | Viewed by 1516
Abstract
Blown sand transport plays a pivotal role in determining the optimal placement of sand protection facilities along railways in sandy areas. Surface vegetation cover significantly influences blowing sand activities along the Oshang Railway (from Otog Front Banner to Shanghai-Temple Town). In this study, [...] Read more.
Blown sand transport plays a pivotal role in determining the optimal placement of sand protection facilities along railways in sandy areas. Surface vegetation cover significantly influences blowing sand activities along the Oshang Railway (from Otog Front Banner to Shanghai-Temple Town). In this study, the spatial characteristics of aeolian sand transport along the railway were derived from field observations conducted at five different locations, each with varying fractional vegetation cover (FVC). The results indicate that sand-transport intensity does not fully correlate with the wind energy environment, primarily due to differences in surface vegetation cover among the observation sites. We utilize the dimensionless ratio Q·g·f/(0.136 × DP·ρa) to represent the sand transport rate (Q), the sand-moving wind frequency (f) and drift potential (DP), exhibiting a negative exponential trend with FVC. Sand transport is effectively restrained when FVC is greater than or equal to 20%. Conversely, when FVC is less than 20%, sand transport intensity exponentially increases with decreasing fractional vegetation cover. After careful analysis, we propose a simple empirical expression that incorporates the influence of both the wind field and fractional vegetation cover to assess sand transport on a flat surface. The study offers valuable insights for designing wind-blown sand protection measures along railways and evaluating wind-blown sand movement on a flat surface affected by vegetation. Full article
Show Figures

Figure 1

15 pages, 7155 KiB  
Article
Characteristics and Hazards of an Aeolian Sand Environment along Railways in the Southeastern Fringe of the Taklimakan Desert and Sand Control Measures
by Benteng Ma, Li Gao, Jianjun Cheng, Bosong Ding, Lusheng Ding, Lei Qu and Yuanfeng An
Appl. Sci. 2022, 12(18), 9186; https://doi.org/10.3390/app12189186 - 13 Sep 2022
Cited by 9 | Viewed by 2543
Abstract
Based on wind velocity and wind direction data monitored by Qiemo and Ruoqiang Meteorological Stations, a systematic elaboration on the wind-sand hazards threatening railways in the study area is given. The results indicate that the study area had an annual sand-moving wind frequency [...] Read more.
Based on wind velocity and wind direction data monitored by Qiemo and Ruoqiang Meteorological Stations, a systematic elaboration on the wind-sand hazards threatening railways in the study area is given. The results indicate that the study area had an annual sand-moving wind frequency of 7.63–20.09%. The prevailing directions of sand-moving wind were NE and ENE. The annual drift potential (DP) of the study area fell within the range of 66.18–124.21 VU, so the study area had a low-wind-energy environment. The yearly direction variability index fell within 0.594–0.610, which was a medium ratio. The yearly resultant drift directions (RDDs) were 222.34° (SW) and 241.79° (WSW), respectively. The seasonal DPs and sand-moving wind frequencies in various directions manifested consistent variation characteristics. The direction variability index presented obvious seasonal variation characteristics. The surface particles in the study area were primarily extremely fine sand, fine sand, and medium sand, which formed wind-sand flows under the sand-moving wind, resulting in railway erosion and two forms of hazards (sand burial and wind erosion) along railways. Following the “blocking-fixing” principle, sand control measures combining mechanical and biological elements are taken along railways to ensure safe service. Full article
Show Figures

Figure 1

18 pages, 4856 KiB  
Article
Analysis of Spatial and Temporal Variations of the Near-Surface Wind Regime and Their Influencing Factors in the Badain Jaran Desert, China
by Ziying Hu, Guangpeng Wang, Yong Liu, Peijun Shi, Guoming Zhang, Jifu Liu, Yu Gu, Xichen Huang, Qingyan Zhang, Xu Han, Xueling Wang, Jiewen Du, Ruoxin Li and Lianyou Liu
Atmosphere 2022, 13(8), 1316; https://doi.org/10.3390/atmos13081316 - 18 Aug 2022
Cited by 3 | Viewed by 2561
Abstract
Wind regime is one of the main natural factors controlling the evolution and distribution of aeolian sand landforms, and sand drift potential (DP) is usually used to study the capacity of aeolian sand transport. The Badain Jaran Desert (BJD) is located where polar [...] Read more.
Wind regime is one of the main natural factors controlling the evolution and distribution of aeolian sand landforms, and sand drift potential (DP) is usually used to study the capacity of aeolian sand transport. The Badain Jaran Desert (BJD) is located where polar cold air frequently enters China. Based on wind data of eight nearby meteorological stations, this research is intended to explore the temporal variation and spatial distribution features of wind speed and DP using linear regression and cumulative anomaly method, and reveal the relationship between atmospheric circulation and wind speed with correlation analysis. We found that the wind speed and frequency of sand-blowing wind in the BJD decreased significantly during 1971–2016, and the wind speed obviously mutated in 1987. The regional wind speed change was affected by the Asian polar vortex, the northern hemisphere polar vortex and the Tibet Plateau circulation. The wind rose of the annual sand-blowing wind in this region was the “acute bimodal” type. Most of the annual wind directions clustered into the W-NW, and the prevailing wind direction was WNW. During 1971–2016, the annual DP, the resultant drift potential (RDP) and the directional variability (PDP/DP) in the desert showed an obvious downtrend, with a “cliff-like” decline in the 1980s and relative stable fluctuation thereafter. The BJD was under a low-energy wind environment with the acute bimodal wind regime. Wind speed, sand-blowing wind frequency and DP were high in the northeast and low in the southwest. Full article
(This article belongs to the Topic Wind, Wave and Tidal Energy Technologies in China)
Show Figures

Figure 1

16 pages, 3548 KiB  
Article
Monitoring Sand Drift Potential and Sand Dune Mobility over the Last Three Decades (Khartouran Erg, Sabzevar, NE Iran)
by Mohammad Reza Rahdari and Andrés Rodríguez-Seijo
Sustainability 2021, 13(16), 9050; https://doi.org/10.3390/su13169050 - 12 Aug 2021
Cited by 12 | Viewed by 4084
Abstract
Aeolian sediments cover about 6% of the earth’s surface, of which 97% occur in arid regions, and these sediments cover about 20% of the world’s lands. Sand drifts can harm sensitive ecosystems; therefore, this research has aimed to study wind regimes and the [...] Read more.
Aeolian sediments cover about 6% of the earth’s surface, of which 97% occur in arid regions, and these sediments cover about 20% of the world’s lands. Sand drifts can harm sensitive ecosystems; therefore, this research has aimed to study wind regimes and the monitoring of sand drift potential and dune mobility in the Khartouran Erg (NE Iran). The study investigated 30 years of wind speed and direction to better understand sand dune mobility processes using the Fryberger and Tsoar methods. The results of the wind regime study showed that the eastern (33.4%) and northeastern (14.3%) directions were more frequent, but the study of winds greater than the threshold (6 m/s) in winter, spring, and autumn indicated the dominance of eastern and northern wind directions. Findings of calm winds showed that winters (40.4%) had the highest frequency, and summers (15%) had the lowest frequency; the annual frequency was 30%. The average wind speed in summers was the highest (4.38 m/s), and, in the winters, it was the lowest (2.28 m/s); the annual average wind speed was 3.3 m/s. The annual drift potential (DP = 173 VU) showed that it was categorized as low class, and the winds carried sand to the southwest. The monitoring of drift potential showed that there was a sharp increase between 2003 and 2008, which could have been attributed to a change in wind speeds in the region. Unite directional index, the index of directional variability, has been alternating from 0.3 to 0.6 for 30 years. Furthermore, monitoring of sand mobility recorded a value from 0.1 to 0.4, and the lowest and highest values were registered from 0.08 to 0.9, with an average of 0.27. Finally, it can be concluded that sand dunes have been fixed for a long time, and the intensity of the mobility index is affected by climate changes. Full article
(This article belongs to the Special Issue Effects of Climate Change on Soil Properties)
Show Figures

Figure 1

56 pages, 25591 KiB  
Review
Review of Liquid Argon Detector Technologies in the Neutrino Sector
by Krishanu Majumdar and Konstantinos Mavrokoridis
Appl. Sci. 2021, 11(6), 2455; https://doi.org/10.3390/app11062455 - 10 Mar 2021
Cited by 27 | Viewed by 5824
Abstract
Liquid Argon (LAr) is one of the most widely used scintillators in particle detection, due to its low cost, high availability and excellent scintillation properties. A large number of experiments in the neutrino sector are based around using LAr in one or more [...] Read more.
Liquid Argon (LAr) is one of the most widely used scintillators in particle detection, due to its low cost, high availability and excellent scintillation properties. A large number of experiments in the neutrino sector are based around using LAr in one or more Time Projection Chambers (TPCs), leading to high resolution three-dimensional particle reconstruction. In this paper, we review and summarise a number of these Liquid Argon Time Projection Chamber (LArTPC) experiments, and briefly describe the specific technologies that they currently employ. This includes single phase LAr experiments (ICARUS T600, MicroBooNE, SBND, LArIAT, DUNE-SP, ProtoDUNE-SP, ArgonCube and Vertical Drift) and dual phase LAr experiments (DUNE-DP, WA105, ProtoDUNE-DP and ARIADNE). We also discuss some new avenues of research in the field of LArTPC readout, which show potential for wide-scale use in the near future. Full article
(This article belongs to the Special Issue Development and Application of Particle Detectors)
Show Figures

Figure 1

14 pages, 11695 KiB  
Article
Wind Dynamic Environment and Wind Tunnel Simulation Experiment of Bridge Sand Damage in Xierong Section of Lhasa–Linzhi Railway
by Shengbo Xie, Jianjun Qu, Qingjie Han and Yingjun Pang
Sustainability 2020, 12(14), 5689; https://doi.org/10.3390/su12145689 - 15 Jul 2020
Cited by 14 | Viewed by 2690
Abstract
The Lhasa–Linzhi Railway is located in the sandy area of the South Tibet valley, with high elevation and cold temperature. The Xierong section is a bridge section where blown sand hazards are severe. However, the disaster-causing mechanism of blown sand hazards in this [...] Read more.
The Lhasa–Linzhi Railway is located in the sandy area of the South Tibet valley, with high elevation and cold temperature. The Xierong section is a bridge section where blown sand hazards are severe. However, the disaster-causing mechanism of blown sand hazards in this section is currently unclear, thereby hindering targeted sand prevention and control. To address this problem, the wind dynamic environment of and causes of sand damage in this section are investigated through the field observation of the locale and a wind tunnel simulation experiment. Results show that the dominant sand-moving wind direction in the Xierong section is SSE. The wind speed, frequency of sand-moving wind, sand drift potential (DP), and maximum possible sand transport quantity (Q) in this section are relatively high during spring (March to May) and low during other seasons. The yearly resultant sand transport direction (RDD, RA) is SW. The angle between the route trend of this section and the sand transportation direction is 30°–45°, and the sand source is located in the east side of the railway. During spring, sand materials are blown up by the wind, forming blown sand flow and movement from the NE to SW direction. Increased wind speed area is formed between the top of the slope shoulder of the windward side of the bridge and the downwind direction of 3H, causing blown sand erosion. Meanwhile, weakened wind speed areas are formed within the distance of -3H at the upwind direction and from the downwind direction of the 3H to 20H of the bridge. These areas accumulate sand materials at the upwind and downwind directions of the bridge, thereby resulting in blown sand hazards. This research provides a scientific basis for the prevention and control of sand damage in the locale. Full article
Show Figures

Figure 1

21 pages, 6964 KiB  
Article
Characteristics of Aeolian Dune, Wind Regime and Sand Transport in Hobq Desert, China
by Hui Yang, Jiansheng Cao and Xianglong Hou
Appl. Sci. 2019, 9(24), 5543; https://doi.org/10.3390/app9245543 - 16 Dec 2019
Cited by 11 | Viewed by 4031
Abstract
A systematic study of the wind regime characteristics in a region can not only accurately grasp the dynamic factors of the development of aeolian geomorphology, but also provide a scientific basis for the prevention and treatment of regional sand disasters. Taking the Hobq [...] Read more.
A systematic study of the wind regime characteristics in a region can not only accurately grasp the dynamic factors of the development of aeolian geomorphology, but also provide a scientific basis for the prevention and treatment of regional sand disasters. Taking the Hobq Desert as the study area, the basic characteristics of dune are analyzed by using remote sensing images. Based on the annual meteorological data of six meteorological stations from 2009 to 2018, the spatial and temporal distribution characteristics of wind speed were obtained. With the daily wind data of three stations from 2009 to 2018, we have figured out the wind regime and sand transport characteristics of the Hobq Desert. The results show that the sand dune height of the Hobq Desert ranges large, the highest height is 5010 m and the lowest is 10 m. It decreases gradually from the west to the east. The height of dune mainly distributed below 1500 m, followed by 1500–2000 m. Migratory sand dunes in Hobq Desert accounts for 51.8% and is mainly distributed in the west of the desert. The distribution area of fixation sand dunes in Hobq Desert is the least, accounting for 8.3%. The migratory dune pattern is trellis dune, semimigrated dune and semifixed dune patterns include honeycomb dune, parabolic duneand brush dune, and fixation dune pattern is grass dune. Annual wind speed was greatest in the southeast and decreased moving to the northwest. The dominant wind direction was W and SW from 2009 to 2018 in the Hobq Desert, the average wind speed of the prevailing winds mainly distributed at 4–8 m/s. The frequency of wind speed exceeding 10 m/s is very low, with a maximum value of 10% or below. There is a low energy wind environment in the Hobq Desert, with intermediate annual directional variability and obtuse or acute bimodal wind regime. The resultant drift direction (RDD)at Dongsheng station was relatively constant from 2009 to 2018, it was about 350°. RDD differed significantly at Baotou and Linhestations were 181 ± 169° and 231 ± 121°, respectively.The relationship between drift potential (DP) and the average and maximum wind speed was expressed as a power function. DP was strongly correlated with them. There is no significant correlated between the temporal changes in DPandprecipitation and temperature from 2009 to 2018 in the Hobq Desert. Full article
(This article belongs to the Special Issue Soil Erosion: Dust Control and Sand Stabilization)
Show Figures

Figure 1

Back to TopTop