Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (10)

Search Parameters:
Keywords = double-nozzle technique

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 4889 KB  
Article
Self-Healing Imidazole-Cured Epoxy Using Microencapsulated Epoxy-Amine Chemistry
by Zhihui Li, Gang Du, Sen Yang, Xuerong Lu, Fuli Zheng, Bin Hao, Peng Zhan, Guangmao Li and He Zhang
Polymers 2025, 17(17), 2391; https://doi.org/10.3390/polym17172391 - 1 Sep 2025
Cited by 1 | Viewed by 1653
Abstract
Epoxy resins used in reactors are prone to cracking and failure due to mechanical vibration, thermal stress, and ultraviolet radiation. Improving their resistance to damage is important to extend the service life of reactors. This investigation develops a self-healing imidazole-cured epoxy resin for [...] Read more.
Epoxy resins used in reactors are prone to cracking and failure due to mechanical vibration, thermal stress, and ultraviolet radiation. Improving their resistance to damage is important to extend the service life of reactors. This investigation develops a self-healing imidazole-cured epoxy resin for reactors using epoxy microcapsules and amine microcapsules prepared by electrospraying-interfacial polymerization (ES-IP) microencapsulation technique. Firstly, this investigation studies the feasibility of using double nozzles for simultaneous spraying to improve the preparation of small-sized microcapsules. After successful synthesis, the healing performance of self-healing imidazole-cured epoxy based on the microencapsulated epoxy-amine chemistry was studied, focusing on the influence of the ratio, concentration, and size of the two microcapsules on the healing efficiency, and further exploring the thermal stability of the self-healing performance. The addition of microcapsules to the mechanical properties was also investigated. Results show that the double-nozzle technique can prepare microcapsules with controllable sizes (20~200 μm). The self-healing imidazole-cured epoxy exhibits high self-healing performance, reaching 100% at the optimal ratio with 10.0 wt% 50~100 μm microcapsules. Although the added microcapsules reduce the tensile strength of the material, they improve its high-temperature aging resistance. The above investigation is significant for developing self-healing fiber-reinforced epoxy-based composite materials for reactors. Full article
(This article belongs to the Special Issue Thermal Behavior of Polymer Materials II)
Show Figures

Figure 1

22 pages, 4482 KB  
Article
RCS Special Analysis Method for Non-Cooperative Aircraft Based on Inverse Reconfiguration Coupled with Aerodynamic Optimization
by Guoxu Feng, Chuan Wei, Jie Huang, Juyi Long and Yang Bai
Aerospace 2025, 12(7), 573; https://doi.org/10.3390/aerospace12070573 - 24 Jun 2025
Viewed by 998
Abstract
To address the challenge of evaluating a radar cross-section (RCS) for a non-cooperative aircraft with limited aerodynamic shape information, this paper presents a multi-source, data-driven inverse reconstruction method. This approach integrates data fusion techniques to facilitate an initial shape reconstruction, followed by an [...] Read more.
To address the challenge of evaluating a radar cross-section (RCS) for a non-cooperative aircraft with limited aerodynamic shape information, this paper presents a multi-source, data-driven inverse reconstruction method. This approach integrates data fusion techniques to facilitate an initial shape reconstruction, followed by an iterative optimization process that utilizes computational fluid dynamics (CFD) to enhance the shape, accounting for the aerodynamic performance. Additionally, an inverse deduction analysis is effectively employed to ascertain the characteristics of the power system, leading to the design of a double S-curved tail nozzle layout with stealth capabilities. An aerodynamic analysis demonstrates that at Mach 0.6, the lift-to-drag ratio peaks at 27.3 for the attack angle of 4°, after which it declines as the angle increases. At higher angles of attack, complex flow separation occurs and expands with the increasing angle. The electromagnetic simulation results indicate that under vertical polarization, the omnidirectional RCS reaches its peak as the incident angle is deflected downward by 10° and reduces with the growth of the angle, demonstrating angular robustness. Conversely, under horizontal polarization, the RCS is more sensitive to edge-induced rounding. The findings illustrate that this methodology enables accurate shape modeling for non-cooperative targets, thereby providing a fairly solid basis for stealth performance evaluation and the assessment of surprise effectiveness. Full article
(This article belongs to the Section Aeronautics)
Show Figures

Figure 1

21 pages, 7912 KB  
Article
Visualization and Parameters Determination of Supersonic Flows in Convergent-Divergent Micro-Nozzles Using Schlieren Z-Type Technique and Fluid Mechanics
by Reyna Judith Mendoza-Anchondo, Cornelio Alvarez-Herrera and José Guadalupe Murillo-Ramírez
Fluids 2025, 10(2), 40; https://doi.org/10.3390/fluids10020040 - 3 Feb 2025
Cited by 1 | Viewed by 4228
Abstract
Small-scale and supersonic convergent-divergent type micro-nozzles with characteristic sizes of around a few centimeters and exit and throat radii of tenths of millimeters were the subjects of this study. Using the schlieren Z-type optical technique, the supersonic airflows established at the exit of [...] Read more.
Small-scale and supersonic convergent-divergent type micro-nozzles with characteristic sizes of around a few centimeters and exit and throat radii of tenths of millimeters were the subjects of this study. Using the schlieren Z-type optical technique, the supersonic airflows established at the exit of seven nozzles were visualized. The dependence of the shock cell characteristics on the nozzle pressure ratio (NPR), defined as the ratio of stagnation pressure to atmospheric pressure, was analyzed. The dependence of the nozzle thrust and the specific impulse on the NPR ratio and the mass flow rate was also studied using a simple device based on concepts of fluid mechanics. The results obtained are in agreement with similar results obtained in recently published research on double-bell nozzles. The thrust of all nozzles depends linearly on the shock-cell spacing, which is one of the most relevant findings of this research. In other words, the output airflow structure determines the performance of the nozzles, such as the thrust or the specific impulse they produce. These small nozzles offer significant advantages over conventional nozzles in low energy consumption and lower manufacturing cost, making them suitable for scientific research in space micro-propulsion and cooling microelectronic systems, among other applications. Full article
Show Figures

Figure 1

13 pages, 3238 KB  
Article
Effect of Injection Parameters on the MRI and Dielectric Properties of Condensation-Cured Silicone
by Conor Cristant, Kamal Kolasangiani, Siddharth Sadanand, Habiba Bougherara and Dafna Sussman
Polymers 2023, 15(24), 4670; https://doi.org/10.3390/polym15244670 - 11 Dec 2023
Viewed by 1670
Abstract
Phantoms with tissue-mimicking properties play a crucial role in the calibration of medical imaging modalities, including Magnetic Resonance Imaging (MRI). Among these phantoms, silicone-based ones are widely used due to their long-term stability in MR imaging. Most of these phantoms are manufactured using [...] Read more.
Phantoms with tissue-mimicking properties play a crucial role in the calibration of medical imaging modalities, including Magnetic Resonance Imaging (MRI). Among these phantoms, silicone-based ones are widely used due to their long-term stability in MR imaging. Most of these phantoms are manufactured using traditional pour-mold techniques which often result in the production of air bubbles that can damage the phantom. This research investigates the feasibility of utilizing extrusion techniques to fabricate silicone phantoms and explores the effects of extrusion parameters including plunger speed and nozzle diameter on void content, T1 and T2 relaxation times, and dielectric properties. A custom double-syringe silicone extrusion apparatus was developed to prepare the silicone samples. The void content, relaxometry, and dielectric properties of extruded samples were measured and compared with traditional poured samples. The results show that extrusion parameters can affect the void content of the silicone samples. The presence of voids in the samples resulted in lower T1 values, indicating an inverse relationship between void content and relaxometry. This study demonstrates the potential of extrusion techniques for manufacturing silicone phantoms with reduced air bubble formation and provides valuable insights into the relationship between extrusion parameters and phantom properties. Full article
(This article belongs to the Section Polymer Processing and Engineering)
Show Figures

Figure 1

29 pages, 5314 KB  
Article
A Comparative Performance Investigation of Single- and Double-Nozzle Pulse Mode Minimum Quantity Lubrication Systems in Turning Super-Duplex Steel Using a Weighted Pugh Matrix Sustainable Approach
by Soumikh Roy, Ramanuj Kumar, Amlana Panda, Ashok Kumar Sahoo, Mohammad Rafighi and Diptikanta Das
Sustainability 2023, 15(20), 15160; https://doi.org/10.3390/su152015160 - 23 Oct 2023
Cited by 10 | Viewed by 3175
Abstract
This study investigates the performance comparison of machining of UNS S32750 super-duplex stainless steel under single- and double-nozzle pulse mode minimum quantity lubrication (MQL) conditions. The pulse mode MQL system delivers lubricant pulses at specific intervals. The Taguchi L9 design, with three [...] Read more.
This study investigates the performance comparison of machining of UNS S32750 super-duplex stainless steel under single- and double-nozzle pulse mode minimum quantity lubrication (MQL) conditions. The pulse mode MQL system delivers lubricant pulses at specific intervals. The Taguchi L9 design, with three factors and their three levels, was taken to perform the CNC turning experiments under both single-nozzle and double-nozzle MQL cooling environments. The surface roughness (Ra), tool-flank wear (VB), tool-flank temperature (Tf), power consumption (Pc), and material removal rate (MRR) are evaluated and compared as performance indicators. In comparison to single-nozzle MQL, the responses of Ra, VB, Tf, and Pc were found to be decreased by 11.16%, 21.24%, 7.07%, and 3.16% under double-nozzle conditions, respectively, whereas MRR was found to be 18.37% higher under double-nozzle conditions. The MQL pulse time was found to be an important variable that affects Ra, VB, Tf, and MRR significantly. Under both cooling scenarios, common wears such as abrasion, built-up edges, adhesion, and notch wear are detected. Furthermore, the Pugh matrix-based sustainability evaluation results revealed that the double-nozzle MQL technique was superior to single-nozzle MQL, achieving improved sustainability for machining super-duplex stainless steel. Full article
(This article belongs to the Special Issue Advances in Sustainable Machining Processes and Technologies)
Show Figures

Figure 1

15 pages, 4378 KB  
Article
The Double-Nozzle Technique Equipped with RF-Only Funnel and RF-Buncher for the Ion Beam Extraction into Vacuum
by Victor Varentsov
Atoms 2023, 11(10), 123; https://doi.org/10.3390/atoms11100123 - 22 Sep 2023
Cited by 1 | Viewed by 2008
Abstract
This study is a further development of our “Proposal of a new double-nozzle technique for in-gas-jet laser resonance ionization spectroscopy” paper published in the journal Atoms earlier this year. Here, we propose equipping the double-nozzle technique with the RF-only funnel and RF-buncher placed [...] Read more.
This study is a further development of our “Proposal of a new double-nozzle technique for in-gas-jet laser resonance ionization spectroscopy” paper published in the journal Atoms earlier this year. Here, we propose equipping the double-nozzle technique with the RF-only funnel and RF-buncher placed in a gas-jet chamber at a 70 mm distance downstream of the double-nozzle exit. It allows for highly effective extraction into vacuum heavy ion beams, produced in two-steps laser resonance ionization in the argon supersonic jet. We explored the operation of this new full version of the double-nozzle technique through detailed gas dynamic and Monte Carlo trajectory simulations, with the results presented and discussed. In particular, our calculations showed that more than 80% of all nobelium-254 neutral atoms, extracted by argon flow from the gas-stopping cell, can then be extracted into vacuum in a form of pulsed ion beam having low transverse and longitudinal emittance. Full article
(This article belongs to the Section Atomic, Molecular and Nuclear Spectroscopy and Collisions)
Show Figures

Figure 1

22 pages, 11184 KB  
Article
Proposal of a New Double-Nozzle Technique for In-Gas-Jet Laser Resonance Ionization Spectroscopy
by Victor Varentsov
Atoms 2023, 11(6), 88; https://doi.org/10.3390/atoms11060088 - 28 May 2023
Cited by 1 | Viewed by 2122
Abstract
This paper proposes a new double-nozzle technique for in-gas-jet laser resonance ionization spectroscopy. We explored the functionality of this new technique through detailed gas dynamic and Monte Carlo atom-trajectory simulations, in which results are presented and discussed. The results of similar computer simulations [...] Read more.
This paper proposes a new double-nozzle technique for in-gas-jet laser resonance ionization spectroscopy. We explored the functionality of this new technique through detailed gas dynamic and Monte Carlo atom-trajectory simulations, in which results are presented and discussed. The results of similar computer simulations for JetRIS setup (as a typical representative of the conventional in-gas-jet technique nowadays) are also presented and discussed. The direct comparison of calculation results for the proposed new technique with the conventional one shows that the double-nozzle technique has many advantages compared with the one used in the JetRIS setup at GSI for future high-resolution laser spectroscopic study of heaviest elements. To fully implement the proposed new technique in all existing (or under construction) setups for in-gas-jet laser resonance ionization spectroscopy, it will be enough to replace the used supersonic nozzle with the miniature double-nozzle device described in the paper. Full article
(This article belongs to the Section Atomic, Molecular and Nuclear Spectroscopy and Collisions)
Show Figures

Figure 1

19 pages, 6890 KB  
Article
Analysis of a New SEN Design with an Inner Flow Divider
by Jesus Gonzalez-Trejo, Ruslan Gabbasov, Jose Raul Miranda-Tello, Ignacio Carvajal-Mariscal, Francisco Cervantes-de-la-Torre, Florencio Sanchez-Silva and Cesar Augusto Real-Ramirez
Metals 2021, 11(9), 1437; https://doi.org/10.3390/met11091437 - 11 Sep 2021
Cited by 6 | Viewed by 2726
Abstract
To minimize the product imperfections due to slag entrapment and surface defects, the fluid flow pattern inside the mold must be symmetric, commonly named double-roll flow. Thus, the liquid steel must enter into the mold evenly distributed. The submerged entry nozzle (SEN) is [...] Read more.
To minimize the product imperfections due to slag entrapment and surface defects, the fluid flow pattern inside the mold must be symmetric, commonly named double-roll flow. Thus, the liquid steel must enter into the mold evenly distributed. The submerged entry nozzle (SEN) is crucial in product quality in vertical steel slab continuous casting machines because it distributes the molten steel from the tundish into the mold. This work evaluates the performance of a novel bifurcated nozzle design named “SEN with flow divider”. The symmetry at the outlet ports is obtained by imposing symmetry inside the SEN. The flow divider is a solid barrier attached at the SEN bottom inner wall, the height of which slightly surpasses the upper edges of the outlet ports. The performance analysis is done first using numerical simulations, where the Computational Fluid Dynamics (CFD) technique and the Smoothed Particle Hydrodynamics (SPH) approach are used. Then, experimental tests on a scaled model are also used to evaluate the SEN performance. Numerical and physical simulations showed that the flow divider considerably reduces the SEN outlet jets’ broadness and misalignment, producing compact, aligned, and symmetric jets. Therefore, the SEN design analyzed in this work is a promising alternative to improve process profitability. Full article
(This article belongs to the Section Metal Casting, Forming and Heat Treatment)
Show Figures

Figure 1

12 pages, 3536 KB  
Article
Left-Handed Metamaterial-Inspired Unit Cell for S-Band Glucose Sensing Application
by Mohammad Tariqul Islam, Ahasanul Hoque, Ali F. Almutairi and Nowshad Amin
Sensors 2019, 19(1), 169; https://doi.org/10.3390/s19010169 - 5 Jan 2019
Cited by 64 | Viewed by 6210
Abstract
This paper presents an oval-shaped sensor design for the measurement of glucose concentration in aqueous solution. This unit cell sensing device is inspired by metamaterial properties and is analytically described for better parametric study. The mechanism of the sensor is a sensing layer [...] Read more.
This paper presents an oval-shaped sensor design for the measurement of glucose concentration in aqueous solution. This unit cell sensing device is inspired by metamaterial properties and is analytically described for better parametric study. The mechanism of the sensor is a sensing layer with varying permittivity placed between two nozzle-shaped microstrip lines. Glucose aqueous solutions were characterized considering the water dielectric constant, from 55 to 87, and were identified with a transmission coefficient at 3.914 GHz optimal frequency with double negative (DNG) metamaterial properties. Consequently, the sensitivity of the sensor was estimated at 0.037 GHz/(30 mg/dL) glucose solution. The design and analysis of this sensor was performed using the finite integration technique (FIT)-based Computer Simulation Technology (CST) microwave studio simulation software. Additionally, parametric analysis of the sensing characteristics was conducted using experimental verification for the justification. The performance of the proposed sensor demonstrates the potential application scope for glucose level identification in aqueous solutions regarding qualitative analysis. Full article
(This article belongs to the Special Issue Antenna Technologies for Microwave Sensors)
Show Figures

Figure 1

10 pages, 3273 KB  
Article
Development of a Robotic Arm Based Hydrogel Additive Manufacturing System for In-Situ Printing
by Xiao Li, Qin Lian, Dichen Li, Hua Xin and Shuhai Jia
Appl. Sci. 2017, 7(1), 73; https://doi.org/10.3390/app7010073 - 11 Jan 2017
Cited by 59 | Viewed by 9842
Abstract
In-situ printing is a promising injury repair technique that can be directly applied during surgical operations. This paper features a potential in-situ printing platform based on a small-scale robotic arm with a micro-sized dispenser valve. A double-light-source curing method was applied to print [...] Read more.
In-situ printing is a promising injury repair technique that can be directly applied during surgical operations. This paper features a potential in-situ printing platform based on a small-scale robotic arm with a micro-sized dispenser valve. A double-light-source curing method was applied to print poly(ethylene glycol) diacrylate (PEGDA) with a 20% (weight/volume) ratio and the entire process was controlled automatically by a computer interface where droplet diameter, curing time, mechanical properties were measured and essential printing parameters (e.g., nozzle velocity, nozzle frequency) were determined. Three different two-dimensional (2D) plane models (namely, square, circular, and heart-shaped) were printed during initial printing trials. The feasibility study of in-situ printing on curved surfaces was tested using a three-dimensional (3D) printed defect model. The defect was successfully filled using both parallel and ring printing paths. In conclusion, the robotic arm printing platform and its forming method can achieve a rapid curing of PEGDA hydrogel on a curved surface and has the potential to be applied to in-situ printing. Full article
(This article belongs to the Special Issue Materials for 3D Printing)
Show Figures

Figure 1

Back to TopTop