Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (4)

Search Parameters:
Keywords = disseminated tumour cells (DTCs)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 674 KB  
Review
Single-Cell Analysis of Bone-Marrow-Disseminated Tumour Cells
by Kevin Wang Leong So, Zezhuo Su, Jason Pui Yin Cheung and Siu-Wai Choi
Diagnostics 2024, 14(19), 2172; https://doi.org/10.3390/diagnostics14192172 - 29 Sep 2024
Cited by 2 | Viewed by 2763
Abstract
Metastasis frequently targets bones, where cancer cells from the primary tumour migrate to the bone marrow, initiating new tumour growth. Not only is bone the most common site for metastasis, but it also often marks the first site of metastatic recurrence. Despite causing [...] Read more.
Metastasis frequently targets bones, where cancer cells from the primary tumour migrate to the bone marrow, initiating new tumour growth. Not only is bone the most common site for metastasis, but it also often marks the first site of metastatic recurrence. Despite causing over 90% of cancer-related deaths, effective treatments for bone metastasis are lacking, with current approaches mainly focusing on palliative care. Circulating tumour cells (CTCs) are pivotal in metastasis, originating from primary tumours and circulating in the bloodstream. They facilitate metastasis through molecular interactions with the bone marrow environment, involving direct cell-to-cell contacts and signalling molecules. CTCs infiltrate the bone marrow, transforming into disseminated tumour cells (DTCs). While some DTCs remain dormant, others become activated, leading to metastatic growth. The presence of DTCs in the bone marrow strongly correlates with future bone and visceral metastases. Research on CTCs in peripheral blood has shed light on their release mechanisms, yet investigations into bone marrow DTCs have been limited. Challenges include the invasiveness of bone marrow aspiration and the rarity of DTCs, complicating their isolation. However, advancements in single-cell analysis have facilitated insights into these elusive cells. This review will summarize recent advancements in understanding bone marrow DTCs using single-cell analysis techniques. Full article
(This article belongs to the Section Pathology and Molecular Diagnostics)
Show Figures

Figure 1

27 pages, 2828 KB  
Review
Dormancy in Breast Cancer, the Role of Autophagy, lncRNAs, miRNAs and Exosomes
by Leila Jahangiri and Tala Ishola
Int. J. Mol. Sci. 2022, 23(9), 5271; https://doi.org/10.3390/ijms23095271 - 9 May 2022
Cited by 29 | Viewed by 6944
Abstract
Breast cancer (BC) is the most frequently diagnosed cancer in women for which numerous diagnostic and therapeutic options have been developed. Namely, the targeted treatment of BC, for the most part, relies on the expression of growth factors and hormone receptors by these [...] Read more.
Breast cancer (BC) is the most frequently diagnosed cancer in women for which numerous diagnostic and therapeutic options have been developed. Namely, the targeted treatment of BC, for the most part, relies on the expression of growth factors and hormone receptors by these cancer cells. Despite this, close to 30% of BC patients may experience relapse due to the presence of minimal residual disease (MRD) consisting of surviving disseminated tumour cells (DTCs) from the primary tumour which can colonise a secondary site. This can lead to either detectable metastasis or DTCs entering a dormant state for a prolonged period where they are undetectable. In the latter, cells can re-emerge from their dormant state due to intrinsic and microenvironmental cues leading to relapse and metastatic outgrowth. Pre- and clinical studies propose that targeting dormant DTCs may inhibit metastasis, but the choice between keeping them dormant or forcing their “awakening” is still controversial. This review will focus on cancer cells’ microenvironmental cues and metabolic and molecular properties, which lead to dormancy, relapse, and metastatic latency in BC. Furthermore, we will focus on the role of autophagy, long non-coding RNAs (lncRNAs), miRNAs, and exosomes in influencing the induction of dormancy and awakening of dormant BC cells. In addition, we have analysed BC treatment from a viewpoint of autophagy, lncRNAs, miRNAs, and exosomes. We propose the targeted modulation of these processes and molecules as modern aspects of precision medicine for BC treatment, improving both novel and traditional BC treatment options. Understanding these pathways and processes may ultimately improve BC patient prognosis, patient survival, and treatment response. Full article
(This article belongs to the Special Issue Breast Cancer, Metastatic Breast Cancer, Therapeutic Approaches)
Show Figures

Figure 1

32 pages, 783 KB  
Review
Targeting Intercellular Communication in the Bone Microenvironment to Prevent Disseminated Tumor Cell Escape from Dormancy and Bone Metastatic Tumor Growth
by Lauren M. Kreps and Christina L. Addison
Int. J. Mol. Sci. 2021, 22(6), 2911; https://doi.org/10.3390/ijms22062911 - 13 Mar 2021
Cited by 16 | Viewed by 6038
Abstract
Metastasis to the bone is a common feature of many cancers including those of the breast, prostate, lung, thyroid and kidney. Once tumors metastasize to the bone, they are essentially incurable. Bone metastasis is a complex process involving not only intravasation of tumor [...] Read more.
Metastasis to the bone is a common feature of many cancers including those of the breast, prostate, lung, thyroid and kidney. Once tumors metastasize to the bone, they are essentially incurable. Bone metastasis is a complex process involving not only intravasation of tumor cells from the primary tumor into circulation, but extravasation from circulation into the bone where they meet an environment that is generally suppressive of their growth. The bone microenvironment can inhibit the growth of disseminated tumor cells (DTC) by inducing dormancy of the DTC directly and later on following formation of a micrometastatic tumour mass by inhibiting metastatic processes including angiogenesis, bone remodeling and immunosuppressive cell functions. In this review we will highlight some of the mechanisms mediating DTC dormancy and the complex relationships which occur between tumor cells and bone resident cells in the bone metastatic microenvironment. These inter-cellular interactions may be important targets to consider for development of novel effective therapies for the prevention or treatment of bone metastases. Full article
Show Figures

Figure 1

14 pages, 5768 KB  
Article
Detection and Prognostic Relevance of Circulating and Disseminated Tumour Cell in Dogs with Metastatic Mammary Carcinoma: A Pilot Study
by Laura Marconato, Antonella Facchinetti, Claudia Zanardello, Elisabetta Rossi, Riccardo Vidotto, Katia Capello, Erica Melchiotti, Paola Laganga, Rita Zamarchi and Marta Vascellari
Cancers 2019, 11(2), 163; https://doi.org/10.3390/cancers11020163 - 1 Feb 2019
Cited by 20 | Viewed by 5558
Abstract
In human breast cancer, both circulating tumour cells (CTCs) in peripheral blood and disseminated tumour cells (DTCs) in the bone marrow are predictive of short survival and may be used as liquid biopsy to guide therapy. Herein we investigate, for the first time, [...] Read more.
In human breast cancer, both circulating tumour cells (CTCs) in peripheral blood and disseminated tumour cells (DTCs) in the bone marrow are predictive of short survival and may be used as liquid biopsy to guide therapy. Herein we investigate, for the first time, the feasibility to quantify CTCs and DTCs in canine metastatic mammary carcinoma (MMC) with the automated CellSearch platform, which identifies tumour cells by immune-magnetic enrichment and fluorescent labelling. Using this approach before start of treatment, we could detect at least 1 CTC per 7.5 mL of peripheral blood in 12 out of 27 evaluable samples (44.4%) and at least 1 DTC per 1 mL of bone marrow in 11 out of 14 evaluable samples (78.6%). Conversely, we did not find any CTCs in the healthy, negative control dogs (n = 5) that we analysed in parallel. Interestingly, the levels of CTCs/DTCs and the prevalence of positive dogs closely resemble results obtained by CellSearch assay in metastatic breast cancer patients at diagnosis. Moreover, in the canine cohort, the presence of CTCs was significantly associated with poor outcome. These observations identify the first actionable marker in veterinarian oncology to guide treatment of canine MMC. Furthermore, our findings have important implications for human research, since it reinforce the value of canine MMC as model useful to speed up pharmacological studies with primary endpoint of overall survival, given the reduced life-span of the canine species. Full article
(This article belongs to the Special Issue Circulating Tumor Cells (CTCs))
Show Figures

Figure 1

Back to TopTop