Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = direct-write spray coating

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 11748 KiB  
Article
Crack-Based Composite Flexible Sensor with Superhydrophobicity to Detect Strain and Vibration
by Yazhou Zhang, Huansheng Wu, Linpeng Liu, Yang Yang, Changchao Zhang and Ji’an Duan
Polymers 2024, 16(17), 2535; https://doi.org/10.3390/polym16172535 - 7 Sep 2024
Cited by 4 | Viewed by 1535
Abstract
Vibration sensors are widely applied in the detection of faults and analysis of operational states in engineering machinery and equipment. However, commercial vibration sensors with a feature of high hardness hinder their usage in some practical applications where the measured objects have irregular [...] Read more.
Vibration sensors are widely applied in the detection of faults and analysis of operational states in engineering machinery and equipment. However, commercial vibration sensors with a feature of high hardness hinder their usage in some practical applications where the measured objects have irregular surfaces that are difficult to install. Moreover, as the operating environments of machinery become increasingly complex, there is a growing demand for sensors capable of working in wet and humid conditions. Here, we present a flexible, superhydrophobic vibration sensor with parallel microcracks. The sensor is fabricated using a femtosecond laser direct writing ablation strategy to create the parallel cracks on a PDMS film, followed by spray-coating with a conductive ink composed of MWCNTs, CB, and PDMS. The results demonstrate that the developed flexible sensor exhibits a high-frequency response of up to 2000 Hz, a high acceleration response of up to 100 m/s2, a water contact angle as high as 159.61°, and a linearity of 0.9812 between the voltage signal and acceleration. The results indicate that the sensor can be employed for underwater vibration, sound recognition, and vibration monitoring in fields such as shield cutters, holding significant potential for mechanical equipment vibration monitoring and speech-based human–machine interaction. Full article
(This article belongs to the Section Polymer Composites and Nanocomposites)
Show Figures

Figure 1

15 pages, 3385 KiB  
Article
Direct-Write Spray Coating of a Full-Duplex Antenna for E-Textile Applications
by Ying Zhou, Saber Soltani, Braden M. Li, Yuhao Wu, Inhwan Kim, Henry Soewardiman, Douglas H. Werner and Jesse S. Jur
Micromachines 2020, 11(12), 1056; https://doi.org/10.3390/mi11121056 - 29 Nov 2020
Cited by 14 | Viewed by 3646
Abstract
Recent advancements in printing technologies have greatly improved the fabrication efficiency of flexible and wearable electronics. Electronic textiles (E-textiles) garner particular interest because of their innate and desirable properties (i.e., conformability, breathability, fabric hand), which make them the ideal platform for creating wireless [...] Read more.
Recent advancements in printing technologies have greatly improved the fabrication efficiency of flexible and wearable electronics. Electronic textiles (E-textiles) garner particular interest because of their innate and desirable properties (i.e., conformability, breathability, fabric hand), which make them the ideal platform for creating wireless body area networks (WBANs) for wearable healthcare applications. However, current WBANs are limited in use due to a lack of flexible antennas that can provide effective wireless communication and data transfer. In this work, we detail a novel fabrication process for flexible textile-based multifunctional antennas with enhanced dielectric properties. Our fabrication process relies on direct-write printing of a dielectric ink consisting of ultraviolet (UV)-curable acrylates and urethane as well as 4 wt.% 200 nm barium titanate (BT) nanoparticles to enhance the dielectric properties of the naturally porous textile architecture. By controlling the spray-coating process parameters of BT dielectric ink on knit fabrics, the dielectric constant is enhanced from 1.43 to 1.61, while preserving the flexibility and air permeability of the fabric. The novel combination textile substrate shows great flexibility, as only 2 N is required for a 30 mm deformation. The final textile antenna is multifunctional in the sense that it is capable of operating in a full-duplex mode while presenting a relatively high gain of 9.12 dB at 2.3 GHz and a bandwidth of 79 MHz (2.260–2.339 GHz) for each port. Our proposed manufacturing process shows the potential to simplify the assembly of traditionally complex E-textile systems. Full article
Show Figures

Figure 1

Back to TopTop