Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = direct laser writing photolithography (DLW photolithography)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 5767 KiB  
Article
Benzylidene Cyclopentanone Derivative Photoinitiator for Two-Photon Photopolymerization-Photochemistry and 3D Structures Fabrication for X-ray Application
by Anton E. Egorov, Alexey A. Kostyukov, Denis A. Shcherbakov, Danila A. Kolymagin, Dmytro A. Chubich, Rilond P. Matital, Maxim V. Arsenyev, Ivan D. Burtsev, Mikhail G. Mestergazi, Elnara R. Zhiganshina, Sergey A. Chesnokov, Alexei G. Vitukhnovsky and Vladimir A. Kuzmin
Polymers 2023, 15(1), 71; https://doi.org/10.3390/polym15010071 - 24 Dec 2022
Cited by 13 | Viewed by 3332
Abstract
Micron- and submicron-scale 3D structure realization nowadays is possible due to the two-photon photopolymerization (TPP) direct laser writing photolithography (DLW photolithography) method. However, the achievement of lithographic features with dimensions less than 100 nm is in demand for the fabrication of micro-optical elements [...] Read more.
Micron- and submicron-scale 3D structure realization nowadays is possible due to the two-photon photopolymerization (TPP) direct laser writing photolithography (DLW photolithography) method. However, the achievement of lithographic features with dimensions less than 100 nm is in demand for the fabrication of micro-optical elements with high curvature values, including X-ray microlenses. Spectroscopic and photochemical study of a photoinitiator (PI) based on a methyl methacrylate derivative of 2,5-bis(4-(dimethylamino)benzylidene) cyclopentanone was performed. Enhanced intersystem crossing in the methyl methacrylate derivative results in increased radical generation for the subsequent initiation of polymerization. A comprehensive study of the new photocompositions was performed, with particular emphasis on photochemical constants, the degree of photopolymerization, and topology. The optimal parameters for the fabrication of mechanically stable structures were determined in this research. The threshold dose parameters for lithography (radiation power of 5 mW at a speed of 180 µm/s) when trying to reach saturation values with a conversion degree of (35 ± 1) % were defined, as well as parameters for sub-100 nm feature fabrication. Moreover, the 45 nm feature size for elements was reached. Fabrication of X-ray lens microstructures was also demonstrated. Full article
(This article belongs to the Section Polymer Applications)
Show Figures

Figure 1

13 pages, 4463 KiB  
Article
Rapid Inkjet-Printed Miniaturized Interdigitated Electrodes for Electrochemical Sensing of Nitrite and Taste Stimuli
by Sohan Dudala, Sangam Srikanth, Satish Kumar Dubey, Arshad Javed and Sanket Goel
Micromachines 2021, 12(9), 1037; https://doi.org/10.3390/mi12091037 - 28 Aug 2021
Cited by 15 | Viewed by 5293
Abstract
This paper reports on single step and rapid fabrication of interdigitated electrodes (IDEs) using an inkjet printing-based approach. A commercial inkjet-printed circuit board (PCB) printer was used to fabricate the IDEs on a glass substrate. The inkjet printer was optimized for printing IDEs [...] Read more.
This paper reports on single step and rapid fabrication of interdigitated electrodes (IDEs) using an inkjet printing-based approach. A commercial inkjet-printed circuit board (PCB) printer was used to fabricate the IDEs on a glass substrate. The inkjet printer was optimized for printing IDEs on a glass substrate using a carbon ink with a specified viscosity. Electrochemical impedance spectroscopy in the frequency range of 1 Hz to 1 MHz was employed for chemical sensing applications using an electrochemical workstation. The IDE sensors demonstrated good nitrite quantification abilities, detecting a low concentration of 1 ppm. Taste simulating chemicals were used to experimentally analyze the ability of the developed sensor to detect and quantify tastes as perceived by humans. The performance of the inkjet-printed IDE sensor was compared with that of the IDEs fabricated using maskless direct laser writing (DLW)-based photolithography. The DLW–photolithography-based fabrication approach produces IDE sensors with excellent geometric tolerances and better sensing performance. However, inkjet printing provides IDE sensors at a fraction of the cost and time. The inkjet printing-based IDE sensor, fabricated in under 2 min and costing less than USD 0.3, can be adapted as a suitable IDE sensor with rapid and scalable fabrication process capabilities. Full article
(This article belongs to the Special Issue Smart Microfluidic Devices with Photonic Control and Sensing)
Show Figures

Figure 1

Back to TopTop