Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = dipyridyl benzene ligand

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 2589 KB  
Communication
Zn(II) Metal–Organic Frameworks with a Long Spacer Ligand and a Tricarboxylate Coligand
by Dong Hee Lee and In-Hyeok Park
Crystals 2023, 13(8), 1266; https://doi.org/10.3390/cryst13081266 - 17 Aug 2023
Cited by 1 | Viewed by 1929
Abstract
The preparations and structural characteristics of three-dimensional Zn(II) metal-organic frameworks (MOFs) with dipyridyl-olefin and tricarboxylate are reported. The solvothermal reactions of zinc(II) nitrate hexahydrate, 1,4-bis [2-(4-pyridyl)ethenyl]benzene (bpeb), and 4,4′,4″,-benzene-1,3,5-triyl-tris(benzoic acid) (H3btb) furnished three Zn(II) MOFs (13) with [...] Read more.
The preparations and structural characteristics of three-dimensional Zn(II) metal-organic frameworks (MOFs) with dipyridyl-olefin and tricarboxylate are reported. The solvothermal reactions of zinc(II) nitrate hexahydrate, 1,4-bis [2-(4-pyridyl)ethenyl]benzene (bpeb), and 4,4′,4″,-benzene-1,3,5-triyl-tris(benzoic acid) (H3btb) furnished three Zn(II) MOFs (13) with new topologies. Depending on the temperature or mole-ratio variations, self-interpenetrated [Zn2(bpeb)(btb)(OH)]·DMF·H2O (1), noninterpenetrated [Zn3(btb)2(bpeb)]·xSolvent (2), and fourfold interpenetrated [Zn2(Hbtb)2(bpeb)][Zn2(Hbtb)2(bpeb)][Zn4(Hbtb)4(bpeb)2] (3) structures were generated with different molecular building blocks. It is interesting that although all three MOFs contain the same metal cation, anion, and spacer ligand, they show different emissions due to structure and connectivity. Full article
(This article belongs to the Special Issue Feature Papers in Crystals 2023)
Show Figures

Figure 1

9 pages, 2249 KB  
Article
A Novel Class of Cyclometalated Platinum(II) Complexes for Solution-Processable OLEDs
by Dominique Roberto, Alessia Colombo, Claudia Dragonetti, Francesco Fagnani, Massimo Cocchi and Daniele Marinotto
Molecules 2022, 27(16), 5171; https://doi.org/10.3390/molecules27165171 - 13 Aug 2022
Cited by 13 | Viewed by 2974
Abstract
Substitution of the chlorido ligand of cyclometalated [Pt (5-R-1,3-di(2-pyridyl) benzene)Cl] (R = methyl, mesityl, 2-thienyl, or 4-diphenylamino-phenyl) by 4-phenylthiazole-2-thiolate leads to related thiolato complexes, which were fully characterized. Their photophysical properties were determined in degassed dichloromethane solution. The emission color of the novel [...] Read more.
Substitution of the chlorido ligand of cyclometalated [Pt (5-R-1,3-di(2-pyridyl) benzene)Cl] (R = methyl, mesityl, 2-thienyl, or 4-diphenylamino-phenyl) by 4-phenylthiazole-2-thiolate leads to related thiolato complexes, which were fully characterized. Their photophysical properties were determined in degassed dichloromethane solution. The emission color of the novel complexes can be easily tuned by the nature of the substituents on the terdentate ligand, as is the case for the parent chlorido complexes. Their luminescence Quantum Yield is high, with that of the compounds with the 2-thienyl or 4-diphenylamino-phenyl substituents being much higher than that of the related chloride complexes. The platinum complex with the cyclometalated 5-(2-thienyl)-1,3-di(2-pyridyl) benzene was used as the emitter for the fabrication of a yellow solution-processable OLED. Full article
(This article belongs to the Special Issue Metal Complexes for Optical and Electronics Applications)
Show Figures

Figure 1

Back to TopTop