Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (3)

Search Parameters:
Keywords = digital advertising fraud

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
29 pages, 1680 KiB  
Article
Ads and Fraud: A Comprehensive Survey of Fraud in Online Advertising
by Shadi Sadeghpour and Natalija Vlajic
J. Cybersecur. Priv. 2021, 1(4), 804-832; https://doi.org/10.3390/jcp1040039 - 16 Dec 2021
Cited by 12 | Viewed by 16796
Abstract
Over the last two decades, we have witnessed a fundamental transformation of the advertising industry, which has been steadily moving away from the traditional advertising mediums, such as television or direct marketing, towards digital-centric and internet-based platforms. Unfortunately, due to its large-scale adoption [...] Read more.
Over the last two decades, we have witnessed a fundamental transformation of the advertising industry, which has been steadily moving away from the traditional advertising mediums, such as television or direct marketing, towards digital-centric and internet-based platforms. Unfortunately, due to its large-scale adoption and significant revenue potential, digital advertising has become a very attractive and frequent target for numerous cybercriminal groups. The goal of this study is to provide a consolidated view of different categories of threats in the online advertising ecosystems. We begin by introducing the main elements of an online ad platform and its different architecture and revenue models. We then review different categories of ad fraud and present a taxonomy of known attacks on an online advertising system. Finally, we provide a comprehensive overview of methods and techniques for the detection and prevention of fraudulent practices within those system—both from the scientific as well as the industry perspective. The main novelty of our work lies in the development of an innovative taxonomy of different types of digital advertising fraud based on their actual executors and victims. We have placed different advertising fraud scenarios into real-world context and provided illustrative examples thereby offering an important practical perspective that is very much missing in the current literature. Full article
(This article belongs to the Special Issue Cyber Security and Digital Forensics)
Show Figures

Figure 1

33 pages, 2421 KiB  
Article
Click Fraud in Digital Advertising: A Comprehensive Survey
by Shadi Sadeghpour and Natalija Vlajic
Computers 2021, 10(12), 164; https://doi.org/10.3390/computers10120164 - 1 Dec 2021
Cited by 18 | Viewed by 14161
Abstract
Recent research has revealed an alarming prevalence of click fraud in online advertising systems. In this article, we present a comprehensive study on the usage and impact of bots in performing click fraud in the realm of digital advertising. Specifically, we first provide [...] Read more.
Recent research has revealed an alarming prevalence of click fraud in online advertising systems. In this article, we present a comprehensive study on the usage and impact of bots in performing click fraud in the realm of digital advertising. Specifically, we first provide an in-depth investigation of different known categories of Web-bots along with their malicious activities and associated threats. We then ask a series of questions to distinguish between the important behavioral characteristics of bots versus humans in conducting click fraud within modern-day ad platforms. Subsequently, we provide an overview of the current detection and threat mitigation strategies pertaining to click fraud as discussed in the literature, and we categorize the surveyed techniques based on which specific actors within a digital advertising system are most likely to deploy them. We also offer insights into some of the best-known real-world click bots and their respective ad fraud campaigns observed to date. According to our knowledge, this paper is the most comprehensive research study of its kind, as it examines the problem of click fraud both from a theoretical as well as practical perspective. Full article
(This article belongs to the Special Issue Feature Paper in Computers)
Show Figures

Graphical abstract

23 pages, 2354 KiB  
Article
Behavioural Verification: Preventing Report Fraud in Decentralized Advert Distribution Systems
by Stylianos S. Mamais and George Theodorakopoulos
Future Internet 2017, 9(4), 88; https://doi.org/10.3390/fi9040088 - 20 Nov 2017
Cited by 8 | Viewed by 6708
Abstract
Service commissions, which are claimed by Ad-Networks and Publishers, are susceptible to forgery as non-human operators are able to artificially create fictitious traffic on digital platforms for the purpose of committing financial fraud. This places a significant strain on Advertisers who have no [...] Read more.
Service commissions, which are claimed by Ad-Networks and Publishers, are susceptible to forgery as non-human operators are able to artificially create fictitious traffic on digital platforms for the purpose of committing financial fraud. This places a significant strain on Advertisers who have no effective means of differentiating fabricated Ad-Reports from those which correspond to real consumer activity. To address this problem, we contribute an advert reporting system which utilizes opportunistic networking and a blockchain-inspired construction in order to identify authentic Ad-Reports by determining whether they were composed by honest or dishonest users. What constitutes a user’s honesty for our system is the manner in which they access adverts on their mobile device. Dishonest users submit multiple reports over a short period of time while honest users behave as consumers who view adverts at a balanced pace while engaging in typical social activities such as purchasing goods online, moving through space and interacting with other users. We argue that it is hard for dishonest users to fake honest behaviour and we exploit the behavioural patterns of users in order to classify Ad-Reports as real or fabricated. By determining the honesty of the user who submitted a particular report, our system offers a more secure reward-claiming model which protects against fraud while still preserving the user’s anonymity. Full article
(This article belongs to the Special Issue Security and Privacy in Wireless and Mobile Networks)
Show Figures

Figure 1

Back to TopTop