Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (6)

Search Parameters:
Keywords = differential hall profiling

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 6067 KiB  
Review
Differential Hall Effect Metrology for Electrical Characterization of Advanced Semiconductor Layers
by Bulent M. Basol and Abhijeet Joshi
Metrology 2024, 4(4), 547-565; https://doi.org/10.3390/metrology4040034 - 2 Oct 2024
Cited by 1 | Viewed by 2022
Abstract
Semiconductor layers employed in fabricating advanced node devices are becoming thinner and their electrical properties are diverging from those established for highly crystalline standards. Since these properties also change as a function of depth within the film, accurate carrier profiling solutions are required. [...] Read more.
Semiconductor layers employed in fabricating advanced node devices are becoming thinner and their electrical properties are diverging from those established for highly crystalline standards. Since these properties also change as a function of depth within the film, accurate carrier profiling solutions are required. The Differential Hall Effect (DHE) technique has the unique capability of measuring mobility and carrier concentration (active carriers) through the depth of a semiconductor film. It comprises making successive sheet resistance and sheet Hall coefficient measurements as the thickness of the electrically active layer at a test region is reduced through successive material removal steps. Difference equations are then used to process the data and plot the desired depth profiles. The fundamentals of DHE were established in 1960s. Recently, the adaption of electrochemical processing for the material removal steps, and the integration of all other functionalities in a Differential Hall Effect Metrology (DHEM) tool, has made this technique more practical and accurate and improved its depth resolution to a sub-nm range. In this contribution, we review the development history of this important technique and present data from recent characterization work carried out on Si, Ge and SiGe layers. Full article
Show Figures

Figure 1

20 pages, 16145 KiB  
Article
A Digital Twinning Approach for the Internet of Unmanned Electric Vehicles (IoUEVs) in the Metaverse
by Mohsen Ebadpour, Mohammad (Behdad) Jamshidi, Jakub Talla, Hamed Hashemi-Dezaki and Zdeněk Peroutka
Electronics 2023, 12(9), 2016; https://doi.org/10.3390/electronics12092016 - 26 Apr 2023
Cited by 11 | Viewed by 2397
Abstract
Regarding the importance of the Internet of Things (IoT) and the Metaverse as two practical emerging technologies to enhance the digitalization of public transportation systems, this article introduces an approach for the improvement of IoT and unmanned electric vehicles in the Metaverse, called [...] Read more.
Regarding the importance of the Internet of Things (IoT) and the Metaverse as two practical emerging technologies to enhance the digitalization of public transportation systems, this article introduces an approach for the improvement of IoT and unmanned electric vehicles in the Metaverse, called the Internet of Unmanned Electric Vehicles (IoUEVs). This research includes two important contributions. The first contribution is the description of a framework for how unmanned electric vehicles can be used in the Metaverse, and the second contribution is the creation of a digital twin for an unmanned electric vehicle. In the digital twin section, which is the focus of this research, we present a digital twin of an electronic differential system (EDS) in which the stability has been improved. Robust fuzzy logic algorithm-based speed controllers are employed in the EDS to independently control the EV wheels driven by high-performance brushless DC (BLDC) electric motors. In this study, the rotor position information of the motors, which is estimated from the low-precision Hall-effect sensors mounted on the motors’ shafts, is combined and converted to a set of common switching signals for empowering the EDS of the electric vehicle traction drive system. The proposed digital twin EDS relies on an accurate Hall sensor signals-based synchronizing/locking strategy with a dynamic steering pattern capable of running in severe road conditions with different surface profiles to ensure the EV’s stability. Unlike recent EDSs, the proposed digital twinning approach includes a simple practical topology with no need for auxiliary infrastructures, which is able to reduce mechanical losses and stresses and can be adapted to IoUEVs more effectively. Full article
Show Figures

Figure 1

22 pages, 4961 KiB  
Article
Analysis of Error and Stability of Nanofluid over Horizontal Channel with Heat/Mass Transfer and Nonlinear Thermal Conductivity
by Zeeshan, N. Ameer Ahammad, Nehad Ali Shah, Jae Dong Chung, Attaullah and Haroon Ur Rasheed
Mathematics 2023, 11(3), 690; https://doi.org/10.3390/math11030690 - 29 Jan 2023
Cited by 38 | Viewed by 2413
Abstract
The current investigation aims to analyze the nanofluid flow between two infinite rotating horizontal channels. The lower plate is porous and stretchable. The impact of physical parameters such as Hall current, thermal characteristics, heat source/sink, chemical reaction on velocity, temperature, and concentration profiles [...] Read more.
The current investigation aims to analyze the nanofluid flow between two infinite rotating horizontal channels. The lower plate is porous and stretchable. The impact of physical parameters such as Hall current, thermal characteristics, heat source/sink, chemical reaction on velocity, temperature, and concentration profiles are discussed through graphs. The governing equations are transformed to ordinary differential equations using suitable transformations and then solved numerically using the RK4 approach along with the shooting technique. For varying values of the Schmidt number (SN) and the chemical reaction factor (CRF), the concentration profile declines, but decreases for the activation energy. It is observed that the velocity profile declines with the increasing values of the suction factor. The velocity profile increases when the values of the rotation factors are increased. The temperature field exhibits a rising behavior with increasing values of the thermophoresis factor, Brownian motion, and the thermal radiation factor. It is also observed that the heat transfer rate is significant at the lower wall with the increasing values of the Prandtl number (PN). For the numerical solution, the error estimation and the residue error are calculated for the stability and confirmation of the mathematical model. The novelty of the present work is to investigate the irregular heat source and chemical reaction over the porous rotating channel. A growing performance is revealed by the temperature field, with the increase in the Brownian motion (BM), thermophoresis factor (TF), thermal conductivity factor (TCF), and the radiation factor (RF). Full article
(This article belongs to the Special Issue Advances in Computational Fluid Dynamics with Applications)
Show Figures

Figure 1

17 pages, 4122 KiB  
Article
Radiative MHD Nanofluid Flow over a Moving Thin Needle with Entropy Generation in a Porous Medium with Dust Particles and Hall Current
by Iskander Tlili, Muhammad Ramzan, Seifedine Kadry, Hyun-Woo Kim and Yunyoung Nam
Entropy 2020, 22(3), 354; https://doi.org/10.3390/e22030354 - 18 Mar 2020
Cited by 43 | Viewed by 4383
Abstract
This paper investigated the behavior of the two-dimensional magnetohydrodynamics (MHD) nanofluid flow of water-based suspended carbon nanotubes (CNTs) with entropy generation and nonlinear thermal radiation in a Darcy–Forchheimer porous medium over a moving horizontal thin needle. The study also incorporated the effects of [...] Read more.
This paper investigated the behavior of the two-dimensional magnetohydrodynamics (MHD) nanofluid flow of water-based suspended carbon nanotubes (CNTs) with entropy generation and nonlinear thermal radiation in a Darcy–Forchheimer porous medium over a moving horizontal thin needle. The study also incorporated the effects of Hall current, magnetohydrodynamics, and viscous dissipation on dust particles. The said flow model was described using high order partial differential equations. An appropriate set of transformations was used to reduce the order of these equations. The reduced system was then solved by using a MATLAB tool bvp4c. The results obtained were compared with the existing literature, and excellent harmony was achieved in this regard. The results were presented using graphs and tables with coherent discussion. It was comprehended that Hall current parameter intensified the velocity profiles for both CNTs. Furthermore, it was perceived that the Bejan number boosted for higher values of Darcy–Forchheimer number. Full article
(This article belongs to the Special Issue Thermal Radiation and Entropy Analysis)
Show Figures

Figure 1

21 pages, 5016 KiB  
Article
Hall and Ion-Slip Effect on CNTS Nanofluid over a Porous Extending Surface through Heat Generation and Absorption
by Ibni Ameen, Zahir Shah, Saeed Islam, Saleem Nasir, Waris Khan, Poom Kumam and Phatiphat Thounthong
Entropy 2019, 21(8), 801; https://doi.org/10.3390/e21080801 - 16 Aug 2019
Cited by 27 | Viewed by 4615
Abstract
In this research work, a 3D rotating flow of carbon nanotubes (CNTs) over a porous stretchable sheet for heat and mass transfer is investigated. Kerosene oil is considered as a base liquid and two types of CNTs, (Single & Multi) WCNTs are added [...] Read more.
In this research work, a 3D rotating flow of carbon nanotubes (CNTs) over a porous stretchable sheet for heat and mass transfer is investigated. Kerosene oil is considered as a base liquid and two types of CNTs, (Single & Multi) WCNTs are added as the additives to the base liquid. The present analysis further comprises the combined effect of the Hall, ion-slip, and thermal radiation, along with heat generation/absorption. The appropriate ordinary differential system of equations after applying appropriate transformation is calculated. The resulting nonlinear system of equations (conservation of mass, momentum, temperature) is explained by HAM (Homotopy Analysis Method). Solution of velocities and thermal fields are obtained and discussed graphically. Expression of C f and N u are intended for both type of nanoliquids. The influences of prominent physical factors are plotted for velocities and thermal profiles using Methematica. These graphical results are qualitatively in excellent agreement with the previous published results. Also, single wall nanoparticles are found to have higher temperatures than multi wall CNTs nanoparticles. Full article
Show Figures

Figure 1

16 pages, 1405 KiB  
Article
Thermodynamics Analysis of Variable Viscosity Hydromagnetic Couette Flow in a Rotating System with Hall Effects
by Oluwole D. Makinde, Adetayo S. Eegunjobi and M. Samuel Tshehla
Entropy 2015, 17(11), 7811-7826; https://doi.org/10.3390/e17117811 - 20 Nov 2015
Cited by 26 | Viewed by 5153
Abstract
In this paper, we employed both first and second laws of thermodynamics to analyze the flow and thermal decomposition in a variable viscosity Couette flow of a conducting fluid in a rotating system under the combined influence of magnetic field and Hall current. [...] Read more.
In this paper, we employed both first and second laws of thermodynamics to analyze the flow and thermal decomposition in a variable viscosity Couette flow of a conducting fluid in a rotating system under the combined influence of magnetic field and Hall current. The non-linear governing differential equations are obtained and solved numerically using shooting method coupled with fourth order Runge–Kutta–Fehlberg integration technique. Numerical results obtained for velocities and temperature profiles are utilized to determine the entropy generation rate, skin fictions, Nusselt number and the Bejan number. By plotting the graphs of various values of thermophysical parameters, the features of the flow characteristics are analyzed in detail. It is found that fluid rotation increases the dominant effect of heat transfer irreversibility at the upper moving plate region while the entropy production is more at the lower fixed plate region. Full article
Show Figures

Graphical abstract

Back to TopTop