Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (6)

Search Parameters:
Keywords = depleted uranium alloy

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 4674 KB  
Article
Numerical Simulation of Penetration Process of Depleted Uranium Alloy Based on an FEM-SPH Coupling Algorithm
by Hui Su, Chi Zhang, Zhifei Yan, Ping Gao, Hong Guo, Guanchen Pan and Junsheng Wang
Metals 2023, 13(1), 79; https://doi.org/10.3390/met13010079 - 28 Dec 2022
Cited by 6 | Viewed by 4458
Abstract
In order to quantitatively study the penetration capability of depleted uranium alloy, a simulation model of bullet impact on target plate with FEM-SPH coupling algorithm was established by using LS-DYNA software, which was combined with Johnson-Cook intrinsic model, Johnson-Cook fracture criterion, and equation [...] Read more.
In order to quantitatively study the penetration capability of depleted uranium alloy, a simulation model of bullet impact on target plate with FEM-SPH coupling algorithm was established by using LS-DYNA software, which was combined with Johnson-Cook intrinsic model, Johnson-Cook fracture criterion, and equation of state to conduct a simulation study of alloy bullets made of depleted uranium alloy, tungsten alloy, and high-strength steel to penetrate target plate at 1400 m/s initial velocity. The results show that under the same conditions of initial kinetic energy, initial velocity, and initial volume, the residual kinetic energy of the depleted uranium alloy bullet is 1.14 times that of tungsten alloy and 1.20 times that of high-strength steel, and the residual velocity is 1.14 times that of tungsten alloy and 1.18 times that of steel, and the residual volume is 1.13 times that of tungsten alloy and 1.23 times that of steel after the penetration is completed. The shape of the bullet after penetrating the target plate is relatively sharp, and the diameter of the target hole formed is about 1.70 times the diameter of the projectile, which is significantly larger than 1.54 times that of tungsten alloy and 1.39 times that of high-strength steel, indicating the excellent penetration performance of depleted uranium alloy. Full article
Show Figures

Figure 1

13 pages, 9572 KB  
Article
A Strategic Design Route to Find a Depleted Uranium High-Entropy Alloy with Great Strength
by Weiran Zhang, Yasong Li, Peter K. Liaw and Yong Zhang
Metals 2022, 12(4), 699; https://doi.org/10.3390/met12040699 - 18 Apr 2022
Cited by 8 | Viewed by 3713
Abstract
The empirical parameters of mixing enthalpy (ΔHmix), mixing entropy (ΔSmix), atomic radius difference (δ), valence electron concentration (VEC), etc., are used in this study to design a depleted uranium high-entropy alloy (HEA). X-ray diffraction (XRD), scanning electron [...] Read more.
The empirical parameters of mixing enthalpy (ΔHmix), mixing entropy (ΔSmix), atomic radius difference (δ), valence electron concentration (VEC), etc., are used in this study to design a depleted uranium high-entropy alloy (HEA). X-ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM) were used to assess the phase composition. Compression and hardness tests were conducted to select alloy constituents with outstanding mechanical properties. Based on the experimental results, the empirical criteria of HEAs are an effective means to develop depleted uranium high-entropy alloys (DUHEAs). Finally, we created UNb0.5Zr0.5Mo0.5 and UNb0.5Zr0.5Ti0.2Mo0.2 HEAs with outstanding all-round characteristics. Both alloys were composed of a single BCC structure. The hardness and strength of UNb0.5Zr0.5Mo0.5 and UNb0.5Zr0.5Ti0.2Mo0.2 were 305 HB and 1452 MPa, and 297 HB and 1157 MPa, respectively. Full article
(This article belongs to the Special Issue Amorphous and High-Entropy Alloy Coatings)
Show Figures

Figure 1

12 pages, 3963 KB  
Article
Atomic Simulations of U-Mo under Irradiation: A New Angular Dependent Potential
by Wenhong Ouyang, Wensheng Lai, Jiahao Li, Jianbo Liu and Baixin Liu
Metals 2021, 11(7), 1018; https://doi.org/10.3390/met11071018 - 24 Jun 2021
Cited by 5 | Viewed by 3010
Abstract
Uranium-Molybdenum alloy has been a promising option in the production of metallic nuclear fuels, where the introduction of Molybdenum enhances mechanical properties, corrosion resistance, and dimensional stability of fuel components. Meanwhile, few potential options for molecular dynamics simulations of U and its alloys [...] Read more.
Uranium-Molybdenum alloy has been a promising option in the production of metallic nuclear fuels, where the introduction of Molybdenum enhances mechanical properties, corrosion resistance, and dimensional stability of fuel components. Meanwhile, few potential options for molecular dynamics simulations of U and its alloys have been reported due to the difficulty in the description of the directional effects within atomic interactions, mainly induced by itinerant f-electron behaviors. In the present study, a new angular dependent potential formalism proposed by the author’s group has been further applied to the description of the U-Mo systems, which has achieved a moderately well reproduction of macroscopic properties such as lattice constants and elastic constants of reference phases. Moreover, the potential has been further improved to more accurately describe the threshold displacement energy surface at intermediate and short atomic distances. Simulations of primary radiation damage in solid solutions of the U-Mo system have also been carried out and an uplift in the residual defect population has been observed when the Mo content decreases to around 5 wt.%, which corroborates the negative role of local Mo depletion in mitigation of irradiation damage and consequent swelling behavior. Full article
(This article belongs to the Special Issue Numerical Modeling of Materials under Extreme Conditions)
Show Figures

Figure 1

10 pages, 5297 KB  
Article
An Investigation on the Adiabatic Shear Bands in Depleted U-0.75 wt % Ti Alloy under Dynamic Loading
by Bo Wang, Yongxiang Dong and Guangyan Huang
Metals 2018, 8(2), 145; https://doi.org/10.3390/met8020145 - 22 Feb 2018
Cited by 12 | Viewed by 8748
Abstract
Adiabatic shear bands in uranium alloy projectiles/penetrators, during penetration, allow them to “self-sharpen,” a process that is absent in most tungsten alloy projectiles/penetrators. U-0.75 wt % Ti alloy samples have been accelerated to impact steel targets, and the distribution of adiabatic shear bands [...] Read more.
Adiabatic shear bands in uranium alloy projectiles/penetrators, during penetration, allow them to “self-sharpen,” a process that is absent in most tungsten alloy projectiles/penetrators. U-0.75 wt % Ti alloy samples have been accelerated to impact steel targets, and the distribution of adiabatic shear bands in residual samples has been studied in detail to understand the effect of self-sharpening on penetration. In our study, self-sharpening was evidenced by the distribution of the shear bands in the recovered sample. The shear bands formed during impact were observed to change direction when they crossed grain boundaries, which indicated that the grain boundaries had an influence on the adiabatic shear bands of U-0.75 wt % Ti. Micro-hardness test results showed that the Vickers micro-hardness in the adiabatic shear zone was 18% lower than that in the matrix. In the split-Hopkinson pressure bar (SHPB) experiment, a strain rate of around 2891 s−1 was the threshold strain rate that triggered the formation of adiabatic shear bands in the U-0.75 wt % Ti alloy. Full article
Show Figures

Figure 1

19 pages, 654 KB  
Article
Genotoxic Changes to Rodent Cells Exposed in Vitro to Tungsten, Nickel, Cobalt and Iron
by Stephanie Bardack, Clifton L. Dalgard, John F. Kalinich and Christine E. Kasper
Int. J. Environ. Res. Public Health 2014, 11(3), 2922-2940; https://doi.org/10.3390/ijerph110302922 - 10 Mar 2014
Cited by 14 | Viewed by 7757
Abstract
Tungsten-based materials have been proposed as replacements for depleted uranium in armor-penetrating munitions and for lead in small-arms ammunition. A recent report demonstrated that a military-grade composition of tungsten, nickel, and cobalt induced a highly-aggressive, metastatic rhabdomyosarcoma when implanted into the leg muscle [...] Read more.
Tungsten-based materials have been proposed as replacements for depleted uranium in armor-penetrating munitions and for lead in small-arms ammunition. A recent report demonstrated that a military-grade composition of tungsten, nickel, and cobalt induced a highly-aggressive, metastatic rhabdomyosarcoma when implanted into the leg muscle of laboratory rats to simulate a shrapnel wound. The early genetic changes occurring in response to embedded metal fragments are not known. In this study, we utilized two cultured rodent myoblast cell lines, exposed to soluble tungsten alloys and the individual metals comprising the alloys, to study the genotoxic effects. By profiling cell transcriptomes using microarray, we found slight, yet distinct and unique, gene expression changes in rat myoblast cells after 24 h metal exposure, and several genes were identified that correlate with impending adverse consequences of ongoing exposure to weapons-grade tungsten alloy. These changes were not as apparent in the mouse myoblast cell line. This indicates a potential species difference in the cellular response to tungsten alloy, a hypothesis supported by current findings with in vivo model systems. Studies examining genotoxic-associated gene expression changes in cells from longer exposure times are warranted. Full article
(This article belongs to the Special Issue Recent Advances on Environmental and Toxicologic Pathology)
Show Figures

Figure 1

18 pages, 3596 KB  
Article
Embedded Fragments from U.S. Military Personnel—Chemical Analysis and Potential Health Implications
by José A. Centeno, Duane A. Rogers, Gijsbert B. Van der Voet, Elisa Fornero, Lingsu Zhang, Florabel G. Mullick, Gail D. Chapman, Ayodele O. Olabisi, Dean J. Wagner, Alexander Stojadinovic and Benjamin K. Potter
Int. J. Environ. Res. Public Health 2014, 11(2), 1261-1278; https://doi.org/10.3390/ijerph110201261 - 23 Jan 2014
Cited by 45 | Viewed by 9631
Abstract
Background: The majority of modern war wounds are characterized by high-energy blast injuries containing a wide range of retained foreign materials of a metallic or composite nature. Health effects of retained fragments range from local or systemic toxicities to foreign body reactions [...] Read more.
Background: The majority of modern war wounds are characterized by high-energy blast injuries containing a wide range of retained foreign materials of a metallic or composite nature. Health effects of retained fragments range from local or systemic toxicities to foreign body reactions or malignancies, and dependent on the chemical composition and corrosiveness of the fragments in vivo. Information obtained by chemical analysis of excised fragments can be used to guide clinical decisions regarding the need for fragment removal, to develop therapeutic interventions, and to better anticipate future medical problems from retained fragment related injuries. In response to this need, a new U.S Department of Defense (DoD) directive has been issued requiring characterization of all removed fragments to provide a database of fragment types occurring in combat injuries. Objectives: The objective of this study is to determine the chemical composition of retained embedded fragments removed from injured military personnel, and to relate results to histological findings in tissue adjacent to fragment material. Methods: We describe an approach for the chemical analysis and characterization of retained fragments and adjacent tissues, and include case examples describing fragments containing depleted uranium (DU), tungsten (W), lead (Pb), and non-metal foreign bodies composed of natural and composite materials. Fragments obtained from four patients with penetrating blast wounds to the limbs were studied employing a wide range of chemical and microscopy techniques. Available adjacent tissues from three of the cases were histologically, microscopically, and chemically examined. The physical and compositional properties of the removed foreign material surfaces were examined with energy dispersive x-ray fluorescence spectrometry (EDXRF), scanning electron microscopy (SEM), laser ablation inductively-coupled plasma mass-spectrometry (LA-ICP-MS), and confocal laser Raman microspectroscopy (CLRM). Quantitative chemical analysis of both fragments and available tissues was conducted employing ICP-MS. Results: Over 800 fragments have been characterized and included as part of the Joint Pathology Center Embedded Fragment Registry. Most fragments were obtained from penetrating wounds sustained to the extremities, particularly soft tissue injuries. The majority of the fragments were primarily composed of a single metal such as iron, copper, or aluminum with traces of antimony, titanium, uranium, and lead. One case demonstrated tungsten in both the fragment and the connected tissue, together with lead. Capsular tissue and fragments from a case from the 1991 Kuwait conflict showed evidence of uranium that was further characterized by uranium isotopic ratios analysis to contain depleted uranium. Conclusions: The present study provides a systematic approach for obtaining a full chemical characterization of retained embedded fragments. Given the vast number of combat casualties with retained fragments, it is expected that fragment analysis will have significant implications for the optimal short and long-term care of wounded service members. Full article
(This article belongs to the Special Issue Recent Advances on Environmental and Toxicologic Pathology)
Show Figures

Figure 1

Back to TopTop