Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (4)

Search Parameters:
Keywords = dendritic mesoporous organosilica

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 8632 KiB  
Article
GSH-Triggered/Photothermal-Enhanced H2S Signaling Molecule Release for Gas Therapy
by Xinqiang Liang, Mekhrdod S. Kurboniyon, Yuanhan Zou, Kezong Luo, Shuhong Fang, Pengle Xia, Shufang Ning, Litu Zhang and Chen Wang
Pharmaceutics 2023, 15(10), 2443; https://doi.org/10.3390/pharmaceutics15102443 - 10 Oct 2023
Cited by 7 | Viewed by 1942
Abstract
Traditional treatment methods for tumors are inefficient and have severe side effects. At present, new therapeutic methods such as phototherapy, chemodynamic therapy, and gasodynamic therapy have been innovatively developed. High concentrations of hydrogen sulfide (H2S) gas exhibit cancer-suppressive effects. Herein, a [...] Read more.
Traditional treatment methods for tumors are inefficient and have severe side effects. At present, new therapeutic methods such as phototherapy, chemodynamic therapy, and gasodynamic therapy have been innovatively developed. High concentrations of hydrogen sulfide (H2S) gas exhibit cancer-suppressive effects. Herein, a Prussian blue-loaded tetra-sulfide modified dendritic mesoporous organosilica (PB@DMOS) was rationally constructed with glutathione (GSH)-triggered/photothermal-enhanced H2S signaling molecule release properties for gas therapy. The as-synthesized nanoplatform confined PB nanoparticles in the mesoporous structure of organosilica silica due to electrostatic adsorption. In the case of a GSH overexpressed tumor microenvironment, H2S gas was controllably released. And the temperature increases due to the photothermal effects of PB nanoparticles, further enhancing H2S release. At the same time, PB nanoparticles with excellent hydrogen peroxide catalytic performance also amplified the efficiency of tumor therapy. Thus, a collective nanoplatform with gas therapy/photothermal therapy/catalytic therapy functionalities shows potential promise in terms of efficient tumor therapy. Full article
(This article belongs to the Section Biologics and Biosimilars)
Show Figures

Figure 1

16 pages, 35205 KiB  
Article
Dendritic Mesoporous Organosilica Nanoparticles with Photosensitizers for Cell Imaging, siRNA Delivery and Protein Loading
by Haneen Omar, Sara Jakimoska, Julia Guillot, Edreese Alsharaeh, Clarence Charnay, Frédérique Cunin, Aurélie Bessière, Jean-Olivier Durand, Laurence Raehm, Laure Lichon, Mélanie Onofre and Magali Gary-Bobo
Molecules 2023, 28(14), 5335; https://doi.org/10.3390/molecules28145335 - 11 Jul 2023
Cited by 2 | Viewed by 2437
Abstract
Dendritic mesoporous organosilica nanoparticles (DMON) are a new class of biodegradable nanoparticles suitable for biomolecule delivery. We studied the photochemical internalization (PCI) and photodynamic therapy (PDT) of DMON to investigate new ways for DMON to escape from the endosomes-lysosomes and deliver biomolecules into [...] Read more.
Dendritic mesoporous organosilica nanoparticles (DMON) are a new class of biodegradable nanoparticles suitable for biomolecule delivery. We studied the photochemical internalization (PCI) and photodynamic therapy (PDT) of DMON to investigate new ways for DMON to escape from the endosomes-lysosomes and deliver biomolecules into the cytoplasm of cells. We added photosensitizers in the framework of DMON and found that DMON were loaded with siRNA or FVIII factor protein. We made four formulations with four different photosensitizers. The photosensitizers allowed us to perform imaging of DMON in cancer cells, but the presence of the tetrasulfide bond in the framework of DMON quenched the formation of singlet oxygen. Fortunately, one formulation allowed us to efficiently deliver proapoptotic siRNA in MCF-7 cancer cells leading to 31% of cancer cell death, without irradiation. As for FVIII protein, it was loaded in two formulations with drug-loading capacities (DLC) up to 25%. In conclusion, DMON are versatile nanoparticles capable of loading siRNA and delivering it into cancer cells, and also loading FVIII protein with good DLC. Due to the presence of tetrasulfide, it was not possible to perform PDT or PCI. Full article
(This article belongs to the Collection Porous Materials)
Show Figures

Figure 1

11 pages, 2918 KiB  
Communication
Mesoporous Organosilica Nanoparticles with Tetrasulphide Bond to Enhance Plasmid DNA Delivery
by Yue Zhang, He Xian, Ekaterina Strounina, Kimberley S. Gunther, Matthew J. Sweet, Chen Chen, Chengzhong Yu and Yue Wang
Pharmaceutics 2023, 15(3), 1013; https://doi.org/10.3390/pharmaceutics15031013 - 22 Mar 2023
Cited by 5 | Viewed by 2624
Abstract
Cellular delivery of plasmid DNA (pDNA) specifically into dendritic cells (DCs) has provoked wide attention in various applications. However, delivery tools that achieve effective pDNA transfection in DCs are rare. Herein, we report that tetrasulphide bridged mesoporous organosilica nanoparticles (MONs) have enhanced pDNA [...] Read more.
Cellular delivery of plasmid DNA (pDNA) specifically into dendritic cells (DCs) has provoked wide attention in various applications. However, delivery tools that achieve effective pDNA transfection in DCs are rare. Herein, we report that tetrasulphide bridged mesoporous organosilica nanoparticles (MONs) have enhanced pDNA transfection performance in DC cell lines compared to conventional mesoporous silica nanoparticles (MSNs). The mechanism of enhanced pDNA delivery efficacy is attributed to the glutathione (GSH) depletion capability of MONs. Reduction of initially high GSH levels in DCs further increases the mammalian target of rapamycin complex 1 (mTORc1) pathway activation, enhancing translation and protein expression. The mechanism was further validated by showing that the increased transfection efficiency was apparent in high GSH cell lines but not in low GSH ones. Our findings may provide a new design principle of nano delivery systems where the pDNA delivery to DCs is important. Full article
(This article belongs to the Special Issue Smart Drug Delivery Strategies Based on Porous Materials)
Show Figures

Graphical abstract

15 pages, 3328 KiB  
Article
Enhanced Cancer Starvation Therapy Based on Glucose Oxidase/3-Methyladenine-Loaded Dendritic Mesoporous OrganoSilicon Nanoparticles
by Fan Wu, Yang Liu, Hui Cheng, Yun Meng, Jieyun Shi, Yang Chen and Yelin Wu
Biomolecules 2021, 11(9), 1363; https://doi.org/10.3390/biom11091363 - 14 Sep 2021
Cited by 19 | Viewed by 3913
Abstract
Cell autophagy is a well-known phenomenon in cancer, which limits the efficacy of cancer therapy, especially cancer starvation therapy. Glucose oxidase (GOx), which is considered as an attractive starvation reagent for cancer therapy, can effectively catalyze the conversion of glucose into gluconic acid [...] Read more.
Cell autophagy is a well-known phenomenon in cancer, which limits the efficacy of cancer therapy, especially cancer starvation therapy. Glucose oxidase (GOx), which is considered as an attractive starvation reagent for cancer therapy, can effectively catalyze the conversion of glucose into gluconic acid and hydrogen peroxide (H2O2) in the presence of O2. However, tumor cells adapt to survive by inducing autophagy, limiting the therapy effect. Therefore, anti-cell adaptation via autophagy inhibition could be used as a troubleshooting method to enhance tumor starvation therapy. Herein, we introduce an anti-cell adaptation strategy based on dendritic mesoporous organosilica nanoparticles (DMONs) loaded with GOx and 3-methyladenine (3-MA) (an autophagy inhibition agent) to yield DMON@GOx/3-MA. This formulation can inhibit cell adaptative autophagy after starvation therapy. Our in vitro and in vivo results demonstrate that autophagy inhibition enhances the efficacy of starvation therapy, leading to tumor growth suppression. This anti-cell adaptation strategy will provide a new way to enhance the efficacy of starvation cancer therapy. Full article
Show Figures

Figure 1

Back to TopTop