Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (3)

Search Parameters:
Keywords = dendritic cells Schirmer test

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 1041 KiB  
Article
Clinical Characterization of the Lacrimal Functional Unit in Patients with Chronic Ocular Pain Associated with Dry Eye Disease
by Marta Blanco-Vázquez, Andrea Novo-Diez, Amanda Vázquez, Amalia Enríquez-de-Salamanca, María J. González-García and Margarita Calonge
J. Clin. Med. 2025, 14(15), 5250; https://doi.org/10.3390/jcm14155250 - 24 Jul 2025
Viewed by 336
Abstract
Background/Objectives: The purpose of this study was to clinically characterize the lacrimal functional unit (LFU) of patients with chronic ocular pain associated with dry eye disease (DED). Methods: Ninety-three participants were included in this cross-sectional study: 28 patients with chronic ocular [...] Read more.
Background/Objectives: The purpose of this study was to clinically characterize the lacrimal functional unit (LFU) of patients with chronic ocular pain associated with dry eye disease (DED). Methods: Ninety-three participants were included in this cross-sectional study: 28 patients with chronic ocular pain associated with DED (pain-DED), 35 patients with DED but no pain (no pain-DED), and 30 subjects without DED or ocular pain (controls). The following examinations were performed: symptom questionnaires, visual function assessment, tear meniscus, ocular surface evaluation, meibography, corneal sensitivity, Schirmer test, and in vivo corneal confocal microscopy. Results: Both DED groups presented increased DED-related symptoms (p < 0.001), corneal staining (p < 0.001), Meibomian gland loss (p < 0.010), and dendritic cell density (p < 0.001) compared with controls. Comparing both DED groups, the pain-DED group showed higher DED-related symptoms (p < 0.002) and increased microneuroma density (p < 0.001). Additionally, significant positive correlations were observed between symptom questionnaires and corneal staining (vs. OSDI: r = 0.514, p < 0.001; vs. m-SIDEQ: r = 0.504, p < 0.001; vs. NRS: r = 0.361, p < 0.001; vs. WBFPRS: r = 0.317, p = 0.002), dendritic cell density (vs. OSDI: r = 0.429, p < 0.001; vs. m-SIDEQ: r = 0.440, p < 0.001), and microneuroma density (vs. NRS: r = 0.405, p < 0.001; vs. WBFPRS: r = 0.416, p < 0.001). Conclusions: Differences in the LFU, especially in the morphology of sub-basal corneal nerves, are related to the presence of DED and chronic ocular pain and, along with ocular clinical questionnaires, can help phenotype these patients. Full article
Show Figures

Figure 1

9 pages, 2026 KiB  
Article
Aberrant Corneal Homeostasis in Neurosurgery-Induced Neurotrophic Keratopathy
by Shimpei Oba, Kaoru Araki-Sasaki, Tomoyuki Chihara, Takashi Kojima, Dogru Murat and Kanji Takahashi
J. Clin. Med. 2022, 11(13), 3804; https://doi.org/10.3390/jcm11133804 - 30 Jun 2022
Cited by 1 | Viewed by 2212
Abstract
The characteristic features of neurotrophic keratopathy have been well documented by in vivo and in vitro studies using animal models. However, case reports of neurotrophic keratopathy induced by neurosurgery are limited. We describe the clinical characteristics, anterior segment optical coherence tomography (AS-OCT) and [...] Read more.
The characteristic features of neurotrophic keratopathy have been well documented by in vivo and in vitro studies using animal models. However, case reports of neurotrophic keratopathy induced by neurosurgery are limited. We describe the clinical characteristics, anterior segment optical coherence tomography (AS-OCT) and in vivo confocal microscopy (IVCM) findings of neurotrophic keratopathy induced by surgery for intracranial lesions. This is a case series including 6 eyes of 3 patients (mean age, 69.67 ± 12.50 years) with unilateral neurotrophic keratopathy. The clinical findings of three patients were described and IVCM findings of three patients were analyzed. The duration of neuropathy ranged from 2 to 30 years (median, 22 years). Thickening of the epithelial layer and higher reflection density of the anterior stroma were observed during the healing process using AS-OCT. The mean nerve fiber density of the subepithelial plexus, as determined by IVCM, was 1943 ± 1000 μm/mm2 for neurotrophic eyes and 2242 ± 600.3 μm/mm2 for contralateral eyes (p = 0.0347). The mean respective dendritic cell densities were 30.8 ± 21.8 and 6.25 ± 5.59 cells/mm2 (p < 0.0001), while the mean basal cell sizes were 259 ± 86.5 and 185 ± 45.9 μm2 (p < 0.0001), respectively. These findings suggest that neurosurgery-induced neurotrophic keratopathy may be associated with alterations in the healing process and immune cell distribution in the cornea. Full article
(This article belongs to the Special Issue Advances in Dry Eye Disease Treatment)
Show Figures

Figure 1

18 pages, 1431 KiB  
Article
Ocular Surface Pathology in Patients Suffering from Mercury Intoxication
by Pilar Cañadas, Yrbani Lantigua, Amalia Enríquez-de-Salamanca, Itziar Fernandez, Salvador Pastor-Idoate, Eva M. Sobas, Antonio Dueñas-Laita, José Luis Pérez-Castrillón, Jose C. Pastor Jimeno and Margarita Calonge
Diagnostics 2021, 11(8), 1326; https://doi.org/10.3390/diagnostics11081326 - 23 Jul 2021
Cited by 6 | Viewed by 3299
Abstract
Purpose: To report the ocular surface pathology of patients suffering from acute/subacute mercury vapor intoxication. Design: Cross-sectional study. Participants: Male workers intoxicated with inorganic mercury referred for ophthalmic involvement and healthy control subjects. Methods: The following tests were performed: dry eye (DE)-related symptoms [...] Read more.
Purpose: To report the ocular surface pathology of patients suffering from acute/subacute mercury vapor intoxication. Design: Cross-sectional study. Participants: Male workers intoxicated with inorganic mercury referred for ophthalmic involvement and healthy control subjects. Methods: The following tests were performed: dry eye (DE)-related symptoms indicated by the ocular surface disease (OSDI) index questionnaire; tear osmolarity; analysis of 23 tear cytokine concentrations and principal component and hierarchical agglomerative cluster analyses; tear break-up time (T-BUT); corneal fluorescein and conjunctival lissamine green staining; tear production by Schirmer and tear lysozyme tests; mechanical and thermal corneal sensitivity (non-contact esthesiometry); and corneal nerve analysis and dendritic cell density by in vivo confocal microscopy (IVCM). Results: Twenty-two out of 29 evaluated patients entered the study. Most had DE-related symptoms (OSDI values > 12), that were severe in 63.6% of them. Tear osmolarity was elevated (>308 mOsms/L) in 83.4% of patients (mean 336.23 (28.71) mOsm/L). Corneal and conjunctival staining were unremarkable. T-BUT was low (<7 s) in 22.7% of patients. Schirmer test and tear lysozyme concentration were low in 13.6% and 27.3% of cases, respectively. Corneal esthesiometry showed patient mechanical (mean 147.81 (53.36) mL/min) and thermal thresholds to heat (+2.35 (+1.10) °C) and cold (−2.57 (−1.24) °C) to be significantly higher than controls. Corneal IVCM revealed lower values for nerve density (6.4 (2.94) n/mm2), nerve branching density (2 (2.50) n/mm2), and dendritic cell density (9.1 (8.84) n/mm2) in patients. Tear levels of IL-12p70, IL-6, RANTES, and VEGF were increased, whereas EGF and IP-10/CXCL10 were decreased compared to controls. Based on cytokine levels, two clusters of patients were identified. Compared to Cluster 1, Cluster 2 patients had significantly increased tear levels of 18 cytokines, decreased tear lysozyme, lower nerve branching density, fewer dendritic cells, and higher urine mercury levels. Conclusions: Patients suffering from systemic mercury intoxication showed symptoms and signs of ocular surface pathology, mainly by targeting the trigeminal nerve, as shown by alterations in corneal sensitivity and sub-basal nerve morphology. Full article
(This article belongs to the Section Pathology and Molecular Diagnostics)
Show Figures

Figure 1

Back to TopTop