Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (8)

Search Parameters:
Keywords = delta antigens (HDAg-S and HDAg-L)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
8 pages, 1445 KiB  
Article
Hepatitis Delta Virus Clade 8 Is the Predominant Clade Circulating in Botswana amongst People Living with HIV
by Kabo Baruti, Wonderful T. Choga, Patience C. Motshosi, Bonolo B. Phinius, Basetsana Phakedi, Lynnette N. Bhebhe, Gorata G. A. Mpebe, Chanana D. Tsayang, Tsholofelo Ratsoma, Tendani Gaolathe, Mosepele Mosepele, Joseph Makhema, Roger Shapiro, Shahin Lockman, Sikhulile Moyo, Mosimanegape Jongman, Motswedi Anderson and Simani Gaseitsiwe
Viruses 2024, 16(10), 1568; https://doi.org/10.3390/v16101568 - 4 Oct 2024
Viewed by 1545
Abstract
Hepatitis delta virus (HDV) co-infections more often result in severe hepatitis compared to hepatitis B virus (HBV) infections alone. Despite a high HDV prevalence (7.1%), information regarding circulating HDV clades is very limited in Botswana. We extracted total nucleic acid from confirmed HDV-positive [...] Read more.
Hepatitis delta virus (HDV) co-infections more often result in severe hepatitis compared to hepatitis B virus (HBV) infections alone. Despite a high HDV prevalence (7.1%), information regarding circulating HDV clades is very limited in Botswana. We extracted total nucleic acid from confirmed HDV-positive samples and quantified their viral load. We then sequenced the large hepatitis delta antigen (L-HDAg) using Oxford Nanopore Technology (ONT). Genotyping was performed using the HDV Database, and HDV mutation profiling was performed on AliView. All participants with HBV genotypic information belonged to sub-genotype A1, and 80% (4/5) of them had a higher HDV viral load and a lower HBV viral load. We sequenced 75% (9/12) of the HDV-positive samples, which belonged to HDV clade 8. A total of 54 mutations were discovered, with the most prevalent being Q148R (16%), D149P (16%) and G151D (16%). Known mutations such as S117A, K131R, R139K and G151D were detected, while the other mutations were novel. Our results reveal that HDV clade 8 is the predominant clade in Botswana. The significance of all mutations remains unclear. Future studies with a larger sample size to detect other HDV clades that might be circulating in Botswana and functionally characterize the detected mutations are warranted. Full article
(This article belongs to the Section Human Virology and Viral Diseases)
Show Figures

Figure 1

13 pages, 5282 KiB  
Article
Analysis of Replication, Cell Division-Mediated Spread, and HBV Envelope Protein-Dependent Pseudotyping of Three Mammalian Delta-like Agents
by Gnimah Eva Gnouamozi, Zhenfeng Zhang, Vibhu Prasad, Chris Lauber, Stefan Seitz and Stephan Urban
Viruses 2024, 16(6), 859; https://doi.org/10.3390/v16060859 - 28 May 2024
Cited by 1 | Viewed by 2273
Abstract
The human hepatitis delta virus (HDV) is a satellite RNA virus that depends on hepatitis B virus (HBV) surface proteins (HBsAg) to assemble into infectious virions targeting the same organ (liver) as HBV. Until recently, the evolutionary origin of HDV remained largely unknown. [...] Read more.
The human hepatitis delta virus (HDV) is a satellite RNA virus that depends on hepatitis B virus (HBV) surface proteins (HBsAg) to assemble into infectious virions targeting the same organ (liver) as HBV. Until recently, the evolutionary origin of HDV remained largely unknown. The application of bioinformatics on whole sequence databases lead to discoveries of HDV-like agents (DLA) and shed light on HDV’s evolution, expanding our understanding of HDV biology. DLA were identified in heterogeneous groups of vertebrates and invertebrates, highlighting that the evolution of HDV, represented by eight distinct genotypes, is broader and more complex than previously foreseen. In this study, we focused on the characterization of three mammalian DLA discovered in woodchuck (Marmota monax), white-tailed deer (Odocoileus virginianus), and lesser dog-like bat (Peropteryx macrotis) in terms of replication, cell-type permissiveness, and spreading pathways. We generated replication-competent constructs expressing 1.1-fold over-length antigenomic RNA of each DLA. Replication was initiated by transfecting the cDNAs into human (HuH7, HeLa, HEK293T, A549) and non-human (Vero E6, CHO, PaKi, LMH) cell lines. Upon transfection and replication establishment, none of the DLA expressed a large delta antigen. A cell division-mediated viral amplification assay demonstrated the capability of non-human DLA to replicate and propagate in hepatic and non-hepatic tissues, without the requirement of envelope proteins from a helper virus. Remarkably L-HDAg but not S-HDAg from HDV can artificially mediate envelopment of WoDV and DeDV ribonucleoproteins (RNPs) by HBsAg to form infectious particles, as demonstrated by co-transfection of HuH7 cells with the respective DLA expression constructs and a plasmid encoding HBV envelope proteins. These chimeric viruses are sensitive to HDV entry inhibitors and allow synchronized infections for comparative replication studies. Our results provide a more detailed understanding of the molecular biology, evolution, and virus–host interaction of this unique group of animal viroid-like agents in relation to HDV. Full article
(This article belongs to the Special Issue Life Cycle of Hepatitis D Virus (HDV) and HDV-Like Agents)
Show Figures

Figure 1

18 pages, 3481 KiB  
Article
Investigating the Genetic Diversity of Hepatitis Delta Virus in Hepatocellular Carcinoma (HCC): Impact on Viral Evolution and Oncogenesis in HCC
by Horng-Heng Juang, Chao-Wei Hsu, Kang-Shuo Chang, Shan-Bei Iang, Yang-Hsiang Lin and Mei Chao
Viruses 2024, 16(6), 817; https://doi.org/10.3390/v16060817 - 21 May 2024
Cited by 3 | Viewed by 1909
Abstract
Hepatitis delta virus (HDV), an RNA virus with two forms of the delta antigen (HDAg), relies on hepatitis B virus (HBV) for envelope proteins essential for hepatocyte entry. Hepatocellular carcinoma (HCC) ranks third in global cancer deaths, yet HDV’s involvement remains uncertain. Among [...] Read more.
Hepatitis delta virus (HDV), an RNA virus with two forms of the delta antigen (HDAg), relies on hepatitis B virus (HBV) for envelope proteins essential for hepatocyte entry. Hepatocellular carcinoma (HCC) ranks third in global cancer deaths, yet HDV’s involvement remains uncertain. Among 300 HBV-associated HCC serum samples from Taiwan’s National Health Research Institutes, 2.7% (8/300) tested anti-HDV positive, with 62.7% (5/8) of these also HDV RNA positive. Genotyping revealed HDV-2 in one sample, HDV-4 in two, and two samples showed mixed HDV-2/HDV-4 infection with RNA recombination. A mixed-genotype infection revealed novel mutations at the polyadenylation signal, coinciding with the ochre termination codon for the L-HDAg. To delve deeper into the possible oncogenic properties of HDV-2, the predominant genotype in Taiwan, which was previously thought to be less associated with severe disease outcomes, an HDV-2 cDNA clone was isolated from HCC for study. It demonstrated a replication level reaching up to 74% of that observed for a widely used HDV-1 strain in transfected cultured cells. Surprisingly, both forms of HDV-2 HDAg promoted cell migration and invasion, affecting the rearrangement of actin cytoskeleton and the expression of epithelial–mesenchymal transition markers. In summary, this study underscores the prevalence of HDV-2, HDV-4, and their mixed infections in HCC, highlighting the genetic diversity in HCC as well as the potential role of both forms of the HDAg in HCC oncogenesis. Full article
(This article belongs to the Special Issue Life Cycle of Hepatitis D Virus (HDV) and HDV-Like Agents)
Show Figures

Figure 1

17 pages, 3959 KiB  
Article
Deciphering the Role of Post-Translational Modifications and Cellular Location of Hepatitis Delta Virus (HDV) Antigens in HDV-Mediated Liver Damage in Mice
by Sheila Maestro, Nahia Gomez-Echarte, Gracian Camps, Carla Usai, Cristina Olagüe, Africa Vales, Rafael Aldabe and Gloria Gonzalez-Aseguinolaza
Viruses 2024, 16(3), 379; https://doi.org/10.3390/v16030379 - 28 Feb 2024
Viewed by 2081
Abstract
Hepatitis D virus (HDV) infection represents the most severe form of chronic viral hepatitis. We have shown that the delivery of HDV replication-competent genomes to the hepatocytes using adeno-associated virus (AAV-HDV) as gene delivery vehicles offers a unique platform to investigate the molecular [...] Read more.
Hepatitis D virus (HDV) infection represents the most severe form of chronic viral hepatitis. We have shown that the delivery of HDV replication-competent genomes to the hepatocytes using adeno-associated virus (AAV-HDV) as gene delivery vehicles offers a unique platform to investigate the molecular aspects of HDV and associated liver damage. For the purpose of this study, we generated HDV genomes modified by site-directed mutagenesis aimed to (i) prevent some post-translational modifications of HDV antigens (HDAgs) such as large-HDAg (L-HDAg) isoprenylation or short-HDAg (S-HDAg) phosphorylation; (ii) alter the localization of HDAgs within the subcellular compartments; and (iii) inhibit the right conformation of the delta ribozyme. First, the different HDV mutants were tested in vitro using plasmid-transfected Huh-7 cells and then in vivo in C57BL/6 mice using AAV vectors. We found that Ser177 phosphorylation and ribozymal activity are essential for HDV replication and HDAg expression. Mutations of the isoprenylation domain prevented the formation of infectious particles and increased cellular toxicity and liver damage. Furthermore, altering HDAg intracellular localization notably decreased viral replication, though liver damage remained unchanged versus normal HDAg distribution. In addition, a mutation in the nuclear export signal impaired the formation of infectious viral particles. These findings contribute valuable insights into the intricate mechanisms of HDV biology and have implications for therapeutic considerations. Full article
(This article belongs to the Special Issue Life Cycle of Hepatitis D Virus (HDV) and HDV-Like Agents)
Show Figures

Figure 1

17 pages, 4172 KiB  
Article
Hepatitis Delta Virus Antigens Trigger Oxidative Stress, Activate Antioxidant Nrf2/ARE Pathway, and Induce Unfolded Protein Response
by Olga A. Smirnova, Olga N. Ivanova, Furkat Mukhtarov, Vladimir T. Valuev-Elliston, Artemy P. Fedulov, Petr M. Rubtsov, Natalia F. Zakirova, Sergey N. Kochetkov, Birke Bartosch and Alexander V. Ivanov
Antioxidants 2023, 12(4), 974; https://doi.org/10.3390/antiox12040974 - 21 Apr 2023
Cited by 9 | Viewed by 3081
Abstract
Hepatitis delta virus (HDV) is a viroid-like satellite that may co-infect individuals together with hepatitis B virus (HBV), as well as cause superinfection by infecting patients with chronic hepatitis B (CHB). Being a defective virus, HDV requires HBV structural proteins for virion production. [...] Read more.
Hepatitis delta virus (HDV) is a viroid-like satellite that may co-infect individuals together with hepatitis B virus (HBV), as well as cause superinfection by infecting patients with chronic hepatitis B (CHB). Being a defective virus, HDV requires HBV structural proteins for virion production. Although the virus encodes just two forms of its single antigen, it enhances the progression of liver disease to cirrhosis in CHB patients and increases the incidence of hepatocellular carcinoma. HDV pathogenesis so far has been attributed to virus-induced humoral and cellular immune responses, while other factors have been neglected. Here, we evaluated the impact of the virus on the redox status of hepatocytes, as oxidative stress is believed to contribute to the pathogenesis of various viruses, including HBV and hepatitis C virus (HCV). We show that the overexpression of large HDV antigen (L-HDAg) or autonomous replication of the viral genome in cells leads to increased production of reactive oxygen species (ROS). It also leads to the upregulated expression of NADPH oxidases 1 and 4, cytochrome P450 2E1, and ER oxidoreductin 1α, which have previously been shown to mediate oxidative stress induced by HCV. Both HDV antigens also activated the Nrf2/ARE pathway, which controls the expression of a spectrum of antioxidant enzymes. Finally, HDV and its large antigen also induced endoplasmic reticulum (ER) stress and the concomitant unfolded protein response (UPR). In conclusion, HDV may enhance oxidative and ER stress induced by HBV, thus aggravating HBV-associated pathologies, including inflammation, liver fibrosis, and the development of cirrhosis and hepatocellular carcinoma. Full article
(This article belongs to the Special Issue Nrf2 Antioxidative Pathway and NF-κB Signaling)
Show Figures

Figure 1

15 pages, 10849 KiB  
Article
Variable In Vivo Hepatitis D Virus (HDV) RNA Editing Rates According to the HDV Genotype
by Samira Dziri, Christophe Rodriguez, Athenaïs Gerber, Ségolène Brichler, Chakib Alloui, Dominique Roulot, Paul Dény, Jean Michel Pawlotsky, Emmanuel Gordien and Frédéric Le Gal
Viruses 2021, 13(8), 1572; https://doi.org/10.3390/v13081572 - 9 Aug 2021
Cited by 14 | Viewed by 3499
Abstract
Human hepatitis delta virus (HDV) is a small defective RNA satellite virus that requires hepatitis B virus (HBV) envelope proteins to form its own virions. The HDV genome possesses a single coding open reading frame (ORF), located on a replicative intermediate, the antigenome, [...] Read more.
Human hepatitis delta virus (HDV) is a small defective RNA satellite virus that requires hepatitis B virus (HBV) envelope proteins to form its own virions. The HDV genome possesses a single coding open reading frame (ORF), located on a replicative intermediate, the antigenome, encoding the small (s) and the large (L) isoforms of the delta antigen (s-HDAg and L-HDAg). The latter is produced following an editing process, changing the amber/stop codon on the s-HDAg-ORF into a tryptophan codon, allowing L-HDAg synthesis by the addition of 19 (or 20) C-terminal amino acids. The two delta proteins play different roles in the viral cell cycle: s-HDAg activates genome replication, while L-HDAg blocks replication and favors virion morphogenesis and propagation. L-HDAg has also been involved in HDV pathogenicity. Understanding the kinetics of viral editing rates in vivo is key to unravel the biology of the virus and understand its spread and natural history. We developed and validated a new assay based on next-generation sequencing and aimed at quantifying HDV RNA editing in plasma. We analyzed plasma samples from 219 patients infected with different HDV genotypes and showed that HDV editing capacity strongly depends on the genotype of the strain. Full article
(This article belongs to the Special Issue Hepatitis Delta Virus)
Show Figures

Figure 1

19 pages, 4958 KiB  
Article
AAV-HDV: An Attractive Platform for the In Vivo Study of HDV Biology and the Mechanism of Disease Pathogenesis
by Sheila Maestro, Nahia Gómez-Echarte, Gracián Camps, Carla Usai, Lester Suárez, África Vales, Cristina Olagüe, Rafael Aldabe and Gloria González-Aseguinolaza
Viruses 2021, 13(5), 788; https://doi.org/10.3390/v13050788 - 28 Apr 2021
Cited by 8 | Viewed by 3640
Abstract
Hepatitis delta virus (HDV) infection causes the most severe form of viral hepatitis, but little is known about the molecular mechanisms involved. We have recently developed an HDV mouse model based on the delivery of HDV replication-competent genomes using adeno-associated vectors (AAV), which [...] Read more.
Hepatitis delta virus (HDV) infection causes the most severe form of viral hepatitis, but little is known about the molecular mechanisms involved. We have recently developed an HDV mouse model based on the delivery of HDV replication-competent genomes using adeno-associated vectors (AAV), which developed a liver pathology very similar to the human disease and allowed us to perform mechanistic studies. We have generated different AAV-HDV mutants to eliminate the expression of HDV antigens (HDAgs), and we have characterized them both in vitro and in vivo. We confirmed that S-HDAg is essential for HDV replication and cannot be replaced by L-HDAg or host cellular proteins, and that L-HDAg is essential to produce the HDV infectious particle and inhibits its replication. We have also found that lack of L-HDAg resulted in the increase of S-HDAg expression levels and the exacerbation of liver damage, which was associated with an increment in liver inflammation but did not require T cells. Interestingly, early expression of L-HDAg significantly ameliorated the liver damage induced by the mutant expressing only S-HDAg. In summary, the use of AAV-HDV represents a very attractive platform to interrogate in vivo the role of viral components in the HDV life cycle and to better understand the mechanism of HDV-induced liver pathology. Full article
(This article belongs to the Special Issue Hepatitis Delta Virus)
Show Figures

Figure 1

24 pages, 224 KiB  
Review
Interaction of Host Cellular Proteins with Components of the Hepatitis Delta Virus
by Valerie Greco-Stewart and Martin Pelchat
Viruses 2010, 2(1), 189-212; https://doi.org/10.3390/v2010189 - 18 Jan 2010
Cited by 42 | Viewed by 15027
Abstract
The hepatitis delta virus (HDV) is the smallest known RNA pathogen capable of propagation in the human host and causes substantial global morbidity and mortality. Due to its small size and limited protein coding capacity, HDV is exquisitely reliant upon host cellular proteins [...] Read more.
The hepatitis delta virus (HDV) is the smallest known RNA pathogen capable of propagation in the human host and causes substantial global morbidity and mortality. Due to its small size and limited protein coding capacity, HDV is exquisitely reliant upon host cellular proteins to facilitate its transcription and replication. Remarkably, HDV does not encode an RNA-dependent RNA polymerase which is traditionally required to catalyze RNA-templated RNA synthesis. Furthermore, HDV lacks enzymes responsible for post-transcriptional and -translational modification, processes which are integral to the HDV life cycle. This review summarizes the known HDV-interacting proteins and discusses their significance in HDV biology. Full article
(This article belongs to the Special Issue Subviral RNAs)
Show Figures

Figure 1

Back to TopTop