Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (3)

Search Parameters:
Keywords = deep subseafloor fungi

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 2872 KB  
Article
Fungal Methane Production Under High Hydrostatic Pressure in Deep Subseafloor Sediments
by Mengshi Zhao, Dongxu Li, Jie Liu, Jiasong Fang and Changhong Liu
Microorganisms 2024, 12(11), 2160; https://doi.org/10.3390/microorganisms12112160 - 26 Oct 2024
Cited by 2 | Viewed by 1450
Abstract
Fungi inhabiting deep subseafloor sediments have been shown to possess anaerobic methane (CH4) production capabilities under atmospheric conditions. However, their ability to produce CH4 under in situ conditions with high hydrostatic pressure (HHP) remains unclear. Here, Schizophyllum commune 20R-7-F01, isolated [...] Read more.
Fungi inhabiting deep subseafloor sediments have been shown to possess anaerobic methane (CH4) production capabilities under atmospheric conditions. However, their ability to produce CH4 under in situ conditions with high hydrostatic pressure (HHP) remains unclear. Here, Schizophyllum commune 20R-7-F01, isolated from ~2 km below the seafloor, was cultured in Seawater Medium (SM) in culture bottles fitted with sterile syringes for pressure equilibration. Subsequently, these culture bottles were transferred into 1 L stainless steel pressure vessels at 30 °C for 5 days to simulate in situ HHP and anaerobic environments. Our comprehensive analysis of bioactivity, biomass, and transcriptomics revealed that the S. commune not only survived but significantly enhanced CH4 production, reaching approximately 2.5 times higher levels under 35 MPa HHP compared to 0.1 MPa standard atmospheric pressure. Pathways associated with carbohydrate metabolism, methylation, hydrolase activity, cysteine and methionine metabolism, and oxidoreductase activity were notably activated under HHP. Specifically, key genes involved in fungal anaerobic CH4 synthesis, including methyltransferase mct1 and dehalogenase dh3, were upregulated 7.9- and 12.5-fold, respectively, under HHP. Enhanced CH4 production under HHP was primarily attributed to oxidative stress induced by pressure, supported by intracellular reactive oxygen species (ROS) levels and comparative treatments with cadmium chloride and hydrogen peroxide. These results may provide a strong theoretical basis and practical guidance for future studies on the contribution of fungi to global CH4 flux. Full article
(This article belongs to the Collection Microbial Life in Extreme Environments)
Show Figures

Figure 1

10 pages, 2324 KB  
Article
Bioactive Metabolites from the Deep Subseafloor Fungus Oidiodendron griseum UBOCC-A-114129
by Marion Navarri, Camille Jégou, Arnaud Bondon, Sandrine Pottier, Stéphane Bach, Blandine Baratte, Sandrine Ruchaud, Georges Barbier, Gaëtan Burgaud and Yannick Fleury
Mar. Drugs 2017, 15(4), 111; https://doi.org/10.3390/md15040111 - 7 Apr 2017
Cited by 19 | Viewed by 5134
Abstract
Four bioactive compounds have been isolated from the fungus Oidiodendron griseum UBOCC-A-114129 cultivated from deep subsurface sediment. They were structurally characterized using a combination of LC–MS/MS and NMR analyses as fuscin and its derivatives (dihydrofuscin, dihydrosecofuscin, and secofuscin) and identified as polyketides. Albeit [...] Read more.
Four bioactive compounds have been isolated from the fungus Oidiodendron griseum UBOCC-A-114129 cultivated from deep subsurface sediment. They were structurally characterized using a combination of LC–MS/MS and NMR analyses as fuscin and its derivatives (dihydrofuscin, dihydrosecofuscin, and secofuscin) and identified as polyketides. Albeit those compounds were already obtained from terrestrial fungi, this is the first report of their production by an Oidiodendron species and by the deepest subseafloor isolate ever studied for biological activities. We report a weak antibacterial activity of dihydrosecofuscin and secofuscin mainly directed against Gram-positive bacteria (Minimum Inhibitory Concentration (MIC) equal to Minimum Bactericidal Concentration (MBC), in the range of 100 μg/mL). The activity on various protein kinases was also analyzed and revealed a significant inhibition of CDC2-like kinase-1 (CLK1) by dihysecofuscin. Full article
(This article belongs to the Special Issue Marine Fungal Natural Products)
Show Figures

Graphical abstract

12 pages, 2122 KB  
Article
Deep Subseafloor Fungi as an Untapped Reservoir of Amphipathic Antimicrobial Compounds
by Marion Navarri, Camille Jégou, Laurence Meslet-Cladière, Benjamin Brillet, Georges Barbier, Gaëtan Burgaud and Yannick Fleury
Mar. Drugs 2016, 14(3), 50; https://doi.org/10.3390/md14030050 - 10 Mar 2016
Cited by 23 | Viewed by 8049
Abstract
The evolving global threat of antimicrobial resistance requires a deep renewal of the antibiotic arsenal including the isolation and characterization of new drugs. Underexplored marine ecosystems may represent an untapped reservoir of novel bioactive molecules. Deep-sea fungi isolated from a record-depth sediment core [...] Read more.
The evolving global threat of antimicrobial resistance requires a deep renewal of the antibiotic arsenal including the isolation and characterization of new drugs. Underexplored marine ecosystems may represent an untapped reservoir of novel bioactive molecules. Deep-sea fungi isolated from a record-depth sediment core of almost 2000 m below the seafloor were investigated for antimicrobial activities. This antimicrobial screening, using 16 microbial targets, revealed 33% of filamentous fungi synthesizing bioactive compounds with activities against pathogenic bacteria and fungi. Interestingly, occurrence of antimicrobial producing isolates was well correlated with the complexity of the habitat (in term of microbial richness), as higher antimicrobial activities were obtained at specific layers of the sediment core. It clearly highlights complex deep-sea habitats as chemical battlefields where synthesis of numerous bioactive compounds appears critical for microbial competition. The six most promising deep subseafloor fungal isolates were selected for the production and extraction of bioactive compounds. Depending on the fungal isolates, antimicrobial compounds were only biosynthesized in semi-liquid or solid-state conditions as no antimicrobial activities were ever detected using liquid fermentation. An exception was made for one fungal isolate, and the extraction procedure designed to extract amphipathic compounds was successful and highlighted the amphiphilic profile of the bioactive metabolites. Full article
Show Figures

Graphical abstract

Back to TopTop