Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (3)

Search Parameters:
Keywords = damage reconnaissance survey report

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 18824 KiB  
Article
Reflections from the 2019 Durrës Earthquakes: An Earthquake Engineering Evaluation for Masonry Typologies
by Hüseyin Bilgin, Marsed Leti, Rafael Shehu, Hayri Baytan Özmen, Ahmet Hilmi Deringol and Rrapo Ormeni
Buildings 2023, 13(9), 2227; https://doi.org/10.3390/buildings13092227 - 31 Aug 2023
Cited by 13 | Viewed by 2648
Abstract
Two earthquakes struck the NW region of Albanian territory on 21 September 2019 (Mw = 5.6) and on 26 November 2019 (Mw = 6.4). The epicenters of the seismic activity were located offshore NW Durrës, one of Albania’s most populated cities, [...] Read more.
Two earthquakes struck the NW region of Albanian territory on 21 September 2019 (Mw = 5.6) and on 26 November 2019 (Mw = 6.4). The epicenters of the seismic activity were located offshore NW Durrës, one of Albania’s most populated cities, located 30 km from the capital Tirana. Various aftershocks followed subsequently. While there were no reported injuries, a number of buildings sustained significant damage near the epicenter following the initial event. Subsequently, during the second event, there was loss of life and extensive damage to civilian structures, resulting in multiple collapses. This study focuses on the earthquake damages observed in residential and public buildings in the earthquake-affected region. The earthquakes predominantly affected low-rise masonry buildings, while the newly constructed RC structures built according to the latest seismic rules were almost unaffected. The commonly encountered building typologies in the region, together with photos showing the amount of destruction are presented here. As observed by the authors during the reconnaissance visit to the stricken area, examples of various damage patterns are presented, along with a technically substantiated description of the reasons for those damages. Although modern buildings during recent earthquakes in the region show acceptable performance, the detailed surveys from the Durrës Earthquakes showed that there is still an important level of deficiency in current masonry buildings built by conventional methods and materials. This problem may reoccur in future earthquakes that may hit other rural regions of Albania, which must be focused on systematically in the near future. Full article
(This article belongs to the Special Issue Advanced Research and Prospect of Buildings Seismic Performance)
Show Figures

Figure 1

32 pages, 49075 KiB  
Article
Application of Soil Moisture Active Passive (SMAP) Satellite Data in Seismic Response Assessment
by Ali Farahani, Mahsa Moradikhaneghahi, Majid Ghayoomi and Jennifer M. Jacobs
Remote Sens. 2022, 14(17), 4375; https://doi.org/10.3390/rs14174375 - 2 Sep 2022
Cited by 11 | Viewed by 4594
Abstract
The proven relationship between soil moisture and seismic ground response highlights the need for a tool to track the Earth’s surface soil moisture before and after seismic events. This paper introduces the application of Soil Moisture Active Passive (SMAP) satellite data for global [...] Read more.
The proven relationship between soil moisture and seismic ground response highlights the need for a tool to track the Earth’s surface soil moisture before and after seismic events. This paper introduces the application of Soil Moisture Active Passive (SMAP) satellite data for global soil moisture measurement during earthquakes and consequent events. An approach is presented to study areas that experienced high level of increase in soil moisture during eleven earthquakes. Two ancillary datasets, Global Precipitation Measurement (GPM) and Global Land Data Assimilation (GLDAS), were used to isolate areas that had an earthquake-induced increase in soil moisture from those that were due to hydrological processes. SMAP-based soil moisture changes were synthesized with seismic records developed by the United States Geological Survey (USGS), mapped ground failures in reconnaissance reports, and surface changes marked by Synthetic Aperture Radar (SAR)-based damage proxy maps. In the majority of the target earthquakes, including Croatia 2020, Greece 2020, Indonesia 2018, Taiwan 2016, Ecuador 2016, and Nepal 2015, a relationship between the SMAP soil moisture estimates and seismic events was evident. For these events, the earthquake-induced soil moisture response occurred in liquefaction-prone seismic zones. The New Zealand 2016 event was the only study region for which there was a clear inconsistency between ΔSMSMAP and the seismic records. The promising relationship between soil moisture changes and ground deformations indicates that SMAP would be a useful data resource for geotechnical earthquake engineering applications and reconnaissance efforts. Full article
(This article belongs to the Special Issue Satellite Soil Moisture Validation and Applications)
Show Figures

Graphical abstract

33 pages, 12290 KiB  
Review
A Review of the Performance of Infilled RC Structures in Recent Earthquakes
by André Furtado, Hugo Rodrigues, António Arêde and Humberto Varum
Appl. Sci. 2021, 11(13), 5889; https://doi.org/10.3390/app11135889 - 24 Jun 2021
Cited by 32 | Viewed by 4754
Abstract
The primary objective is to present the most representative types of damage observed in reinforced concrete (RC) structures due to earthquakes. Those damages are divided according to the ten most representative types. Examples and the main reasons that could trigger each failure mechanism [...] Read more.
The primary objective is to present the most representative types of damage observed in reinforced concrete (RC) structures due to earthquakes. Those damages are divided according to the ten most representative types. Examples and the main reasons that could trigger each failure mechanism are presented. The definition of these damage types is supported by post-earthquake damage reconnaissance missions in Sichuan (China) in 2008, L’Aquila (Italy) in 2009, Lorca (Spain) in 2011, Emilia-Romagna (Italy) in 2012, Gorkha (Nepal) in 2015, Muisne (Ecuador) in 2016 and Chiapas (Mexico) in 2017. An extensive discussion is presented concerning the infill walls’ seismic behaviour and their interaction with the RC structural elements. The presentation of the significant learnings and findings concerning the typical damage herein presented and discussed are compared with the common Southern European construction practice. The impact of the infill walls on the rehabilitation costs of damaged RC buildings is also studied. These costs are compared to those related to the structural damage and rehabilitation of the entire building structure to understand the impact of the infill walls. Finally, a case study is presented to study the effect of implementing simplified retrofitting strategies to prevent the soft-storey mechanism, one of the most common problems observed in past earthquake events. Full article
Show Figures

Figure 1

Back to TopTop