Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline

Search Results (1)

Search Parameters:
Keywords = daknamu

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 4795 KB  
Article
Effects of Rooting Substrates and Plant Growth Regulators on Rooting Performance, Photosynthetic Characteristics, and Soil Properties of Broussonetia × kazinoki Sieb. Cuttings
by Sora Lee, Bowook Moon, Seokju Kim and Hyung Won Lee
Forests 2025, 16(11), 1752; https://doi.org/10.3390/f16111752 - 20 Nov 2025
Viewed by 584
Abstract
Daknamu (Broussonetia × kazinoki), the primary fiber source for hanji (traditional Korean handmade paper), provides fibers that are highly durable and used in fine-edition publishing as well as in the conservation and restoration of cultural heritage materials and historic books. However, [...] Read more.
Daknamu (Broussonetia × kazinoki), the primary fiber source for hanji (traditional Korean handmade paper), provides fibers that are highly durable and used in fine-edition publishing as well as in the conservation and restoration of cultural heritage materials and historic books. However, hanji production has declined due to decreased farm cultivation of B. × kazinoki, emphasizing the need for efficient vegetative propagation. This study evaluated the effects of three rooting media (commercial substrate, a mixture of commercial substrate and decomposed granite soil, and decomposed granite soil) and two plant growth regulators (auxins), 1-naphthaleneacetic acid (NAA) and indole-3-butyric acid (IBA), including a rooting powder containing 0.8% IBA, on rooting performance and physiological responses. Decomposed granite soil produced the highest rooting rate, and the rooting effect index peaked with the rooting powder treatment. Exogenous auxins consistently increased the rooting rate and improved root traits. Photosynthetic activity was enhanced in decomposed granite soil, indicating improved water uptake following root development. Chlorophyll fluorescence showed a low Fv/Fm ratio and a JIP pattern indicative of stress. Soil analyses confirmed greater aeration and drainage in decomposed granite soil but revealed limitations in post-rooting water and nutrient availability. Root traits were positively correlated with photosynthetic parameters and available phosphorus, whereas electrical conductivity, cation-exchange capacity, moisture, organic matter, total nitrogen, and exchangeable cations were negatively correlated. Decomposed granite soil combined with 1500 mg·L−1 IBA or rooting powder provided practical conditions for nursery-scale propagation. These findings provide a scientific basis for developing efficient cutting propagation systems for B. × kazinoki in farms and nurseries. Full article
(This article belongs to the Section Forest Ecophysiology and Biology)
Show Figures

Figure 1

Back to TopTop