Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (3)

Search Parameters:
Keywords = cylindrical traveling wave tube

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 10955 KiB  
Article
Power Generation Enhancement through Latching Control for a Sliding Magnet-Based Wave Energy Converter
by Yongseok Lee, HeonYong Kang and MooHyun Kim
J. Mar. Sci. Eng. 2024, 12(4), 656; https://doi.org/10.3390/jmse12040656 - 16 Apr 2024
Viewed by 1600
Abstract
A Surface-Riding Wave Energy Converter (SR-WEC) featuring a sliding magnet inside a pitching cylindrical hull is investigated as an easily deployable small power device to support small-scale marine operations. This study extends the earlier development of the system by authors to enhance power [...] Read more.
A Surface-Riding Wave Energy Converter (SR-WEC) featuring a sliding magnet inside a pitching cylindrical hull is investigated as an easily deployable small power device to support small-scale marine operations. This study extends the earlier development of the system by authors to enhance power performance through the application of end spring and latching control. The inclusion of springs at the tube’s end enhances the magnet release and travel speeds as well as the average power output compared to systems without them. Further improvement of power output can also be achieved by employing optimal latching control. We introduced constant-angle and variable-angle unlatching strategies to determine optimal parameters in combination with passive and reactive power take-off (PTO) controls to assess their effectiveness. The optimized latching control and end spring can increase 60–80% more power output compared with the case without them under certain PTO damping. Additionally, we discussed the effects of limiting peak powers and associated energy leaks with latching. Full article
(This article belongs to the Topic Control and Optimisation for Offshore Renewable Energy)
Show Figures

Figure 1

15 pages, 3769 KiB  
Article
Electromagnetic Particle Algorithm for Beam–Wave Interaction in Traveling Wave Tube of Symmetry
by Shuanghong Zhou, Yuanlin Yao, Yuting Zhang and Bin Ge
Symmetry 2022, 14(10), 2119; https://doi.org/10.3390/sym14102119 - 12 Oct 2022
Cited by 1 | Viewed by 1474
Abstract
In many fields, such as space astrophysics, plasma and vacuum electronics, there are many nonlinear strong coupling physical problems. In order to solve the problem of electron beam–wave interaction in cylindrical Traveling wave tube (TWT) with symmetrical structure, a multi particle simulation algorithm [...] Read more.
In many fields, such as space astrophysics, plasma and vacuum electronics, there are many nonlinear strong coupling physical problems. In order to solve the problem of electron beam–wave interaction in cylindrical Traveling wave tube (TWT) with symmetrical structure, a multi particle simulation algorithm for beam circuit is designed. The algorithm allows aperiodic time input, nonuniform linearity and large space diagnosis for different particles. In this algorithm, the field of coupled slow-wave transmission line is simulated by finite difference method. Assuming that there is strong coupling between the beam and the circuit, the space center equation of transmission along the line is obtained, and the space charge field is modeled considering the space charge effect, which can easily be ignored. The Particle In Cell (PIC) method of frog leaping step scheme is adopted to evaluate the electric field of each particle center, determine the circuit and space charge field, and design the termination part to compensate for the loss in order to avoid self-excited agitation. Finally, a simple numerical simulation is carried out for the electromagnetic problem and the accuracy of the code is checked against the electromagnetic simulator CHPIC. Therefore, the algorithm can be used to solve the problem of beam–wave interactions in a fixed structure (cylindrical) in multiple fields and can accurately record the data in the process. Full article
Show Figures

Figure 1

15 pages, 5075 KiB  
Article
Computational Evaluation of Shock Wave Interaction with a Cylindrical Water Column
by Viola Rossano and Giuliano De Stefano
Appl. Sci. 2021, 11(11), 4934; https://doi.org/10.3390/app11114934 - 27 May 2021
Cited by 11 | Viewed by 3279
Abstract
Computational fluid dynamics was employed to predict the early stages of the aerodynamic breakup of a cylindrical water column, due to the impact of a traveling plane shock wave. The unsteady Reynolds-averaged Navier–Stokes approach was used to simulate the mean turbulent flow in [...] Read more.
Computational fluid dynamics was employed to predict the early stages of the aerodynamic breakup of a cylindrical water column, due to the impact of a traveling plane shock wave. The unsteady Reynolds-averaged Navier–Stokes approach was used to simulate the mean turbulent flow in a virtual shock tube device. The compressible flow governing equations were solved by means of a finite volume-based numerical method, where the volume of fluid technique was employed to track the air–water interface on the fixed numerical mesh. The present computational modeling approach for industrial gas dynamics applications was verified by making a comparison with reference experimental and numerical results for the same flow configuration. The engineering analysis of the shock–column interaction was performed in the shear-stripping regime, where an acceptably accurate prediction of the interface deformation was achieved. Both column flattening and sheet shearing at the column equator were correctly reproduced, along with the water body drift. Full article
Show Figures

Figure 1

Back to TopTop