Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (4)

Search Parameters:
Keywords = cylindrical DEA

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
5 pages, 569 KiB  
Proceeding Paper
Hybrid Modelling Framework for Reactor Model Discovery Using Artificial Neural Networks Classifiers
by Emmanuel Agunloye, Asterios Gavriilidis and Federico Galvanin
Proceedings 2025, 121(1), 11; https://doi.org/10.3390/proceedings2025121011 - 25 Jul 2025
Viewed by 280
Abstract
Developing and identifying the correct reactor model for a reaction system characterized by a high number of reaction pathways and flow regimes can be challenging. In this work, artificial neural networks (ANNs), used in deep learning, are used to develop a hybrid modelling [...] Read more.
Developing and identifying the correct reactor model for a reaction system characterized by a high number of reaction pathways and flow regimes can be challenging. In this work, artificial neural networks (ANNs), used in deep learning, are used to develop a hybrid modelling framework for physics-based model discovery in reactions systems. The model discovery accuracy of the framework is investigated considering kinetic model parametric uncertainty, noise level, features in the data structure and experimental design optimization via a differential evolution algorithm (DEA). The hydrodynamic behaviours of both a continuously stirred tank reactor and a plug flow reactor and rival chemical kinetics models are combined to generate candidate physics-based models to describe a benzoic acid esterification synthesis in a rotating cylindrical reactor. ANNs are trained and validated from in silico data simulated by sampling the parameter space of the physics-based models. Results show that, when monitored using test data classification accuracy, ANN performance improved when the kinetic parameters uncertainty decreased. The performance improved further by increasing the number of features in the data set, optimizing the experimental design and decreasing the measurements error (low noise level). Full article
Show Figures

Figure 1

14 pages, 4749 KiB  
Article
Soft End Effector Using Spring Roll Dielectric Elastomer Actuators
by Hamish Lewis and Min Pan
Actuators 2023, 12(11), 412; https://doi.org/10.3390/act12110412 - 4 Nov 2023
Cited by 2 | Viewed by 2391
Abstract
Dielectric elastomer actuators (DEAs) offer robust, high-energy-density solutions for soft robotics. The proposed end effector consists of three spring roll configuration DEAs, each acting as a robotic finger, using a 3M VHB-F9473PC adhesive membrane. Spring roll DEAs can be designed to achieve highly [...] Read more.
Dielectric elastomer actuators (DEAs) offer robust, high-energy-density solutions for soft robotics. The proposed end effector consists of three spring roll configuration DEAs, each acting as a robotic finger, using a 3M VHB-F9473PC adhesive membrane. Spring roll DEAs can be designed to achieve highly specialised actuations depending on the electrode patterning and structural supports. This allows a spring roll DEA-based soft end effector to be tailor-made by simply altering the electrode patterning. The lateral force, bending angle and response time of the actuator are measured experimentally and compared with the predictions of an analytical model. The cylindrical actuator measures 70 mm in length and 15 mm in diameter and achieves a lateral force of 30 mN, a bending angle of 6.8° and a response time of 1 s. Spring roll configuration DEAs are shown to reduce the effects of viscoelasticity seen in the membrane, making the actuator more controllable at higher voltages. The dielectric constant of the membrane is shown to be a limiting factor of actuation, with a decrease in dielectric constant resulting in larger actuation. The end effector successfully grips numerous light objects for extended periods, showing the applicability of spring roll DEAs for soft end effectors. Full article
(This article belongs to the Special Issue Modelling and Motion Control of Soft Robots)
Show Figures

Figure 1

19 pages, 2724 KiB  
Article
Suitability of Different Analytical Derivations of Electrically Induced Stress States in Planar and Cylindrical Dielectric Elastomer Actuators
by Sascha Pfeil and Gerald Gerlach
Materials 2022, 15(4), 1321; https://doi.org/10.3390/ma15041321 - 10 Feb 2022
Cited by 2 | Viewed by 1935
Abstract
Dielectric elastomers (DE) belong to a very performant and efficient class of functional materials for actuators, while being compliant, low-weight and silent, they offer high energy efficiencies and large deformations under an applied electric field. In this work, a comparison of different approaches [...] Read more.
Dielectric elastomers (DE) belong to a very performant and efficient class of functional materials for actuators, while being compliant, low-weight and silent, they offer high energy efficiencies and large deformations under an applied electric field. In this work, a comparison of different approaches to derive expressions for the electrically induced stress states in dielectric materials is given. In particular, the focus is on three different ways to analytically describe stress states in planar actuator setups and to show how they are connected to each other regarding their resulting deformations. This is the basis to evaluate the suitability of these approaches for cylindrical actuator geometries together with exemplary calculations for concrete use cases. As an outcome, conclusions on the suitability of the different approaches for certain actuator setups are drawn. In particular cylindrical actuator geometries are taken into account and a recommendation on which approach is useful to describe a certain actuator effect is given. Full article
(This article belongs to the Special Issue Interactive Fiber Rubber Composites)
Show Figures

Figure 1

12 pages, 6288 KiB  
Article
Exploiting Stretchable Metallic Springs as Compliant Electrodes for Cylindrical Dielectric Elastomer Actuators (DEAs)
by Chien-Hao Liu, Po-Wen Lin, Jui-An Chen, Yi-Tsung Lee and Yuan-Ming Chang
Micromachines 2017, 8(11), 339; https://doi.org/10.3390/mi8110339 - 22 Nov 2017
Cited by 4 | Viewed by 5415
Abstract
In recent years, dielectric elastomer actuators (DEAs) have been widely used in soft robots and artificial bio-medical applications. Most DEAs are composed of a thin dielectric elastomer layer sandwiched between two compliant electrodes. DEAs vary in their design to provide bending, torsional, and [...] Read more.
In recent years, dielectric elastomer actuators (DEAs) have been widely used in soft robots and artificial bio-medical applications. Most DEAs are composed of a thin dielectric elastomer layer sandwiched between two compliant electrodes. DEAs vary in their design to provide bending, torsional, and stretch/contraction motions under the application of high external voltages. Most compliant electrodes are made of carbon powders or thin metallic films. In situations involving large deformations or improper fabrication, the electrodes are susceptible to breakage and increased resistivity. The worst cases result in a loss of conductivity and functional failure. In this study, we developed a method by which to exploit stretchable metallic springs as compliant electrodes for cylindrical DEAs. This design was inspired by the extensibility of mechanical springs. The main advantage of this approach is the fact that the metallic spring-like compliant electrodes remain conductive and do not increase the stiffness as the tube-like DEAs elongate in the axial direction. This can be attributed to a reduction in thickness in the radial direction. The proposed cylindrical structure is composed of highly-stretchable VHB 4905 film folded within a hollow tube and then sandwiched between copper springs (inside and outside) to allow for stretching and contraction in the axial direction under the application of high DC voltages. We fabricated a prototype and evaluated the mechanical and electromechanical properties of the device experimentally using a high-voltage source of 9.9 kV. This device demonstrated a non-linear increase in axial stretching with an increase in applied voltage, reaching a maximum extension of 0.63 mm (axial strain of 2.35%) at applied voltage of 9.9 kV. Further miniaturization and the incorporation of compressive springs are expected to allow the implementation of the proposed method in soft micro-robots and bio-mimetic applications. Full article
(This article belongs to the Special Issue Locomotion at Small Scales: From Biology to Artificial Systems)
Show Figures

Figure 1

Back to TopTop